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ABSTRACT

Predictive processing posits the brain as a prediction-generating machine. According to this theory,
the brain continuously generates and updates generative models of the external world, seen as a
generative process producing incoming sensory information that needs to be predicted. On this



Predictive coding under the FEP

Some intuitive ideas
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Generative process
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Parr et al. 2023

1. Prediction error minimisation: generative model produces observations consistent
generative process

2. Generative model need not be a mirror of the generative process (structure vs. behaviour)



Duality of structure and penaviour

Algebras and coalgepbras

Structure vs. Observation Algebras (using constructors)
Posted by Emily Riehl (3 + 1) g (4 - 2)
= (4)*(2)

Today we’ll be talking about the theory of universal algebra, and its less well-known counterpart of — 8

guest post by Stelios Tsampas and Amin Karamlou l & g% §(2)

universal coalgebra. We’ll try to convince you that these two frameworks provide us with suitable tools
for studying a fundamental duality that arises between structure and behaviour. Rather than jumping
straight into the mathematical details we’ll start with a few motivating examples that arise in the setting
of functional programming. We’ll talk more about the mathematics at play behind the scenes in the

second half of this post. Coalgebras (using destructors)
Stream

With that our whirlwind tour comes to a close. We’ve seen how universal algebra gives us tools for

exploring the structure of things, while universal coalgebra allows us to explore their behaviour.

Together they gave us a way to rigorously analyse the duality between structure and behaviour. Earlier |_ e d St regm
in the article we made the rather bold claim that this duality transcends the examples we’ve seen here

and goes up all the way to the foundations of thought. We’ll end on a similarly dramatic note by giving

you a philosophical question to ponder:

Head Stream

Is a “thing” best defined by its constituent parts (structure) or by its observable actions(behaviour).




4.5.1 A Generative Model for Predictive Coding
To motivate the form of generative model used for continuous states, we

A 1 / ? New ]Q@TS]Q@CUV@ art with the following pair of equations;

x=f(x,v)+ o, (4.15)
y=8(x,v)+ o,

Lets simplify things

The first of these expresses the evolution of a hidden state over time,
according to a deterministic function (f(x,v)) and stochastic fluctuations
(w). The second equation expresses the way in which data are generated
from the hidden state. In each case, the fluctuations are assumed normally

° CO e |d €ds be Iﬁ | M d th c - E P SAme ]CrO M distributed, giving the following probability densities for the dynamics and

“internal model principle” (old) likelihood:
pi|x,v) = N (F(x,v),T1,)
p(ylx,v)=N(g(x,v),11)

(4.16)
- Disentangle structure from algorithms and

approximations (new) Di=f<i,v>+a3x}:,p(ﬁzw>=/v<D-ﬁﬁx>
?:g(irﬁ)'i'd)y P(f/li,\;)=N(g,ﬁy)

(4.18)

F[,Ur)’]= _lnp(?rﬂxrﬁv)

g=|&,|=| Di, - f (i, ii,) (4.19)

- " Parr et al. 2023



Meanwhile, in control theory

Control-plant-environment factorisation
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A Bayesian Interpretation
of the Internal Model Principle

Manuel Baltieri, Araya Inc.
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Abstract—The internal model principle, originally proposed in
the theory of control of linear systems, nowadays represents a
more general class of results in control theory and cybernetics.
The central claim of these results is that, under suitable assump-
tions, if a system (a controller) can regulate against a class of
external inputs (from the environment), it is because the system
contains a model of the system causing these inputs, which can
be used to generate signals counteracting them. Similar claims
on the role of internal models appear also in cognitive science,
especially in modern Bayesian treatments of cognitive agents,
often suggesting that a system (a human subject, or some other
agent) models its environment to adapt against disturbances and
perform goal-directed behaviour. It is however unclear whether
the Bayesian internal models discussed in cognitive science bear
any formal relation to the internal models invoked in standard
treatments of control theory. Here, we first review the internal
model principle and present a precise formulation of it using
concepts inspired by categorical systems theory. This leads to a
formal definition of ‘“model” generalising its use in the internal
model principle. Although this notion of model is not a priori
related to the notion of Bayesian reasoning, we show that it can
be seen as a special case of possibilistic Bayesian filtering. This
result is based on a recent line of work formalising, using Markov
categories, a notion of inferpretation, describing when a system
can be interpreted as performing Bayesian filtering on an outside
world in a consistent way.

Index Terms—Cybernetics, Control Theory, Internal Model
Principle, Interpretation Map, Bayesian Inference, Bayesian Fil-
tering.

I. INTRODUCTION

A classic slogan in cybernetics states that “every good
regulator of a system must be a model of that system” [11.

organisms at all scales, including microorganisms such as
bacteria [6]—[8].

In artificial intelligence, the concept of world model [9]-
[11], closely related to the idea of an internal model, underlies
a research programme with applications to reinforcement
learning, robotics and deep learning, focusing on learning how
to represent hidden properties of the environment [12].

In cognitive science and neuroscience, internal models
are broadly thought to constitute the computational basis of
perception, motor control and high-level cognitive reason-
ing [13]-[16], although there is no shortage of debate about
this, e.g. [17]-[20]. In the context of neuroscience, internal
models are often, though by no means universally, presented
under a Bayesian framework. According to the Bayesian view,
brains or agents as whole systems, can be thought of as
Bayesian reasoners and their cognitive processes as instances
of Bayesian inference [21]-[24].

While the label “internal model,” or just “model” is used
across different disciplines, it is unclear whether it always
refers to the same underlying formal concept. If cognitive
scientists propose internal models for the study of cognition,
are they referring to the same kind of mathematical objects as
control theorists working with internal models for regulation
problems? We do not fully answer these questions here, but
take some steps towards answering them.

To do so, we structure this work in two main parts. In the
first part (Section II), we present the IMP developed by [25]-
[29] using concepts inspired by categorical systems theory, a
mathematical formalisation of systems and their interactions

ent



Abstracting things

Coalgebras as a language for dynamical systems

The “standard” way The coalgebraic way Graphically (informal)
A (closed) dynamical X.a:X— X) X, f: X = X) [ ]
system
A‘dynamicol system X, 0,a: X = X, (X, fout : X = X X O) x
with outputs y: X — 0)

A dynamical system

. . I
with inputs X, Lp:XXI— X) (X, f1n: X = X7)

A dynamical system (X,LO,p: XX I — X,

: I
with inputs&outputs y. X = 0) (X’fMoore X = XX 0)

A probabilistic system (X, 1,0, pp: XX 1 — P(X), (X, fermoore -
with inputs&outputs vp: X = P(O)) X - P(X)! x P(O))

T T




Maps between (closed) systems

Coalgepbra (homo)morphisms by example

Take two closed systems, (S, f) and (T, g). A map between

these systems is a function ¢ such that the following diagram System (s,F) (Tig)
commutes Time
P A P e
f g t S T T T T >. T
:5: P T """ ': ------------- -: -----
£ :
Y v’
or in other words, if g((S)) = G(f(S)). N -. A .‘
t+1 : ) :_ ______ >; T ;



Benhavioural equivalence

Bisimulations, congruences on benhaviour, by example

Take two closed systems, (S, f) and (7, g). A bisimulation Take two open systems, (S, formoore) 9NA (T €prMoore): A
between these systems is a relation R such that the following  bisimulation between these systems is a relation R such that
diogram commutes the following diogram commutes
SxT
T SxT

R
. / aiq\ . / i \
i S “YPrMoore T

f g i

R
/ \ Feeoore P(R)!™ x P(Out) gPrMoore
~ ! 2 ~ — —
g P(m1)!"x P(idowt) P(m2)'™ X P(idout)

T , i 2 l
P(S)™ x P(Out) P(T)™ x P(Out)

or in other words, if g(w,(R)) = 7,(y(R)) and
J(7 (R)) = 7 (y(R)).

Maps of systems vs. bisimulations?



1. The relation between agent and environment

Prediction error minimisation = Agent-environment attunement

Actions

Generative
proce.ss
| (Bnvironment)

Generative

moo(el (Brain)

Obs

SBrain X SEnv

I

RHomeostasis

/ \ Stny

SBrain
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Ccompressing environments models

Bisimulation equivalences of environments for a particular goal

Actions S o omocms T TN Actions

Generative
proce.ss
| (Bnvironment)

Generative
Process
| (Bnvironment)

Obs

P(SEnV)ACt X P(ObS) P(SEHV)ACt X P(ObS)



Automata theory by changing frunctors

Background: classical theory of symbol sequences

Probably) human unique capacit
Examples:

Unristricted Grammar

R ized b
Turing Machiné) Reqular grammar

Context Sesitive

Grammar {a*n bAm}: aabbbbb

v A

] (Accepted by Linear
Bound Automata
Type_2 » Context Free Grammar ConteXt free grammar
(Accepted by Push
Down Automata) {a/\n bAn}: aaabbb
Type_3 Regular Grammar
(Accepted By .
Finite Automata) Context sensitive grammar

https://www.geeksforgeeks.org/chomsky- {a"n b n c"n}: aaabbbccc
hierarchy-in-theory-of-computation/

But... Seek for more computational approaches => Surprisal

Towards a Coalgebraic Chomsky Hierarchy
(Extended Abstract)*

Sergey Goncharov?!, Stefan Milius!, and Alexandra Silva?

! Lehrstuhl fiir Theoretische Informatik, Friedrich-Alexander-Universitit Erlangen-Niirnberg
2 Radboud University Nijmegen and Centrum Wiskunde & Informatica, Amsterdam

Abstract. The Chomsky hierarchy plays a prominent role in the foundations of
theoretical computer science relating classes of formal languages of primary im-
portance. In this paper we use recent developments on coalgebraic and monad-
based semantics to obtain a generic notion of a T-automaton, where T is a monad,
which allows the uniform study of various notions of machines (e.g. finite state
machines, multi-stack machines, Turing machines, weighted automata). We use
the generalized powerset construction to define a generic (trace) semantics for
T-automata, and we show by numerous examples that it correctly instantiates for
some known classes of machines/languages captured by the Chomsky hierarchy.
Moreover, our approach provides new generic techniques for studying expressiv-
ity power of various machine-based models.

1 Introduction

In recent decades much interest has been drawn to studying generic abstraction devices
not only formally generalizing various computation models and tools, but also identify-
ing core principles and reasoning patterns behind them. An example of this kind is given
by the notion of computational monad [21], which made an impact both on the theory

Af nracrammina faoc an Aaraanizatinn tanl fAar danatatinnal camantincc |I1 ih I’) 11\ and An tha



Summary

Jsing coalgebras to formalise a general treatment of
oredictive coding under the FEP:

. Prediction error as a bisimulation (equivalence on
behaviours)

- Generative model as coarse-grained version of
generative process (bisimulation equivalence) or as
belief MPD of generative process/POMDP

Advantages:

- We can change functor (discrete probability, power
set, tangent, etc.) and obtain automata, continuous-
time systems, etc.
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MODEL / PROCESS

Al in a vat: Fundamental limits of efficient world
modelling for agent sandboxing and interpretability
Fernando E. Rosas, Alexander Boyd, Manuel Baltieri

Keywords: World models, agent sandboxing, POMDPs, Al interpretability, Al safety

Summary

While traditionally conceived as tools for model-based reinforcement learning agents to im-
prove their task performance, recent works have proposed world models as a way to build
controlled virtual environments where Al agents can be thoroughly evaluated before deploy-
ment. However, the efficacy of these approaches critically rely on the ability of world models
to accurately represent real environments, which can results on high computational costs that
may substantially restrict testing capabilities. Drawing inspiration from the ‘brain in a vat’
thought experiment, here we investigate methods to simplify world models that remain agnos-
tic to the agent under evaluation. Our results reveal a fundamental trade-off inherent to the
construction of world models related to their efficiency and interpretability. Furthermore, we
develop approaches that either minimise memory usage, establish the limits on what is learn-
able, or enable retrodictive analyses tracking the causes of undesirable outcomes. These results
sheds light on the fundamental constraints that shape the design space of world modelling for
agent sandboxing and interpretability.







7 "Action-oriented’ models

A way to look at compressed models

“World models” meaning “models the environment” is a pretty  Proposed formalisation: bisimulation equivalences.
flashy but bad name

These build (dynamical) compressions of environments, with

Surely they can't be about the entire universe dynamics, so various possible criteria, for instance:

what are they talking about?
- compression for all possible actions of all possible agents

Action oriented models scem more reasonable (but not

formal): - compression for all possible actions of a single agent
between brain, body, and world. Neural representations, this work has sug- - compression for all possible actions of a single agent, given the
gested, are not action-neutral mirrors of the world. Instead they are in some same reward

deep sense ‘action-oriented’ (Clark 1997, Engel et al. 2013). They are geared

to promoting successful, fast, fluent actions and engagements for a creature

with specific needs and bodily form. Such representations will be as minimal - compression for the actions of a policy chosen by an agent,
as possible, neither encoding nor processing information in costly ways when given the same reward

simpler routines, combined with world-exploiting actions, can do the job.

Clark 2015



Maps between (open) systems

Coalgepbra (homo)morphisms by example

Take two probabilistic dynamical systems, (S, fprmoore) @NA

(T, gprmoore): A Map between these systems is a function ¢
such that the following diagram commutes (Same thing as before, but requiring

S : - that (7, gpmoore)’S INPULS and outputs
e e are equal to (S, fermoore)'s At €ach
time step whenever there's a map

P(0O) x P(T)! between their states that commutes
with the systems’ dynamics.)

P(O) x P(8)!

P(ido)x P()’

or in other words, if gprmoore(@(S)) = O(fprmoore))-



