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Roadmap

✤ World models? Reconstructing vs controlling


- Generative models of behaviour


✤ A Bayesian angle on classical control


- PID controllers and their design process


✤ Variational inference in cognitive (neuro)science


- Duality of inference (perception) and control (action) and dual 
effects of control (action)


✤ Current directions

Initial motivation: 
understand if what 
Friston proposes in 
neuroscience makes sense

Actual motivation: 
understand if variational 
updates in belief space 
can describe life and 
cognition at their core



But first… who am I?

✤ BEng - Computer and software engineering, business administration


✤ MSc - Cybernetics, evolutionary computation, computational modelling (neuroscience, biology, 
behaviour), artificial life


✤ PhD - Theoretical neuroscience, cognitive science, motor control/control theory/cybernetics, stochastic 
processes and filtering, artificial life


✤ (Mini) Postdoc - Bayesian neural networks, robotics + uncertainty modelling in psychophysics


✤ Postdoc (now) - Theoretical neuroscience (motor control and behaviour), filtering, (some) category 
theory, (some) non-equilibrium physics
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Background - Claim 1

Perception can be described as a process of (Bayesian) inference or 
estimation



Background - Claim 2

Action can be described as a process of (optimal) control



Background (maths)

: dynamics

: measurements

x′￼= f(x, v, θ) + w
y = g(x, v, θ) + z

w ∼ N(0, πw = h(λ))
z ∼ N(0, πz = k(λ))

p(y, x, v, θ, λ) = p(y |x, v, θ, λ)p(x′￼|x, v, θ, λ)

: fluctuations on dynamics

: measurement noise

State-space models (SSM) formulation

Probabilistic formulation

(gen. model) (measurements) (dynamics)

Variational distribution
q(x, θ)



Background (maths)

: observations

: (hidden) states

: (hidden) inputs

: (hidden)  parameters

: (hidden)  hyperparameters

y
x
v
θ
λ

= action, assuming that 

= perception/estimation/inference

= perception/estimation/inference

= learning

= attention

Variational updates
y = y(a)

Active inference in continuous space and time (Friston’s framework, and what I 
used in Part 1.):

- fixed-form Gaussian variational inference (+ hierarchical models, here not used)

- separation of timescales for hidden states/inputs (fast) and parameters/hyperparameters 

(slow, fixed), via explicit mean-field or other assumptions

- fast variables updated via free energy, slow variables via path integral of free energy (i.e. free 

energy of trajectories, see Archambeau and Opper (2008), but in practice approximated locally)

- actions unknown to agents and treated as hidden inputs (although some clever tricks are 

implemented to calculate dF/da)

Archambeau, Cédric, et al. "Variational inference for diffusion processes." (2008): 17-24.



Limitations

✤ Stationary (time-independent) policies, but wait for the end of the talk


✤ No learning of SSM parameters (but see Tschanz et al. 2020)


✤ Fixed-form Gaussian VI

vs.

Time-independent vs. time-dependent policies

Tschantz, Alexander, Anil K. Seth, and Christopher L. Buckley. "Learning action-oriented models through active 
inference." PLoS computational biology 16.4 (2020): e1007805.

https://www.freeimages.com/photo/fridge-1325918 https://unsplash.com/photos/3GbcPmYXVwQ



The ‘usual’ generative models

In statistics/ML:


given observations ‘y’ and labels (categories, classes, states, etc.) ‘x’, find the joint 
distribution that best represents the data.

P(x |y) P(y, x)

Discriminative model:

create a decision boundary

Generative model:

generate a distribution of the data

Regression(s), SVMs, etc. Naive Bayes, HMMs, AR models, etc.

https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-supervised-learning

https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-supervised-learning


Example: a generative model in 
robotics
Goal: (e.g., find a light/phototaxis)


“place a wheeled robot in a random environment, provide it with (at least) light sensors, 
get it to approach the light source (for simplicity, let’s assume there’s only one)”

Y - Observations/
measurements: light 
sensors + …


X - States: light’s 
location + commands 
to reach it + …

Thrun, Sebastian, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. MIT press, 2005.

https://pixabay.com/photos/mars-mars-rover-space-travel-rover-67522/



Standard solution: SLAM

Simultaneous Localisation And Mapping (SLAM)


TL;DR: a robot (iteratively) building an estimate of its pose (position 
+ orientation) on a map while building an estimate of the map itself



Example: World models

World models =>
Replicating a model of 


the world inside an agent

Ha, David, and Jürgen Schmidhuber. "World models." arXiv preprint arXiv:1803.10122 (2018).



“…the rule “collect truth for truth’s sake” may be justified when the truth is 
unchanging; but when the system is not completely isolated from its 

surroundings, and is undergoing secular changes, the collection of truth is 
futile, for it will not keep.” 

– Ashby W. R. (1958)

however…



Example: Braitenberg vehicles

Braitenberg, Valentino. Vehicles: Experiments in synthetic psychology. MIT press, 1986.



Phototaxis in active inference

Generative model

yl1 = xl1 + zl1
ym1

= xm1
+ zm1

xm1
= xl2 + wm1

yl2 = xl2 + zl2
ym2

= xm2
+ zm2

xm2
= xl1 + wm2

Baltieri, M. and Buckley, C. L. (2017). “An active inference implementation of 
phototaxis.” Proceedings of the European Conference on Artificial Life, 2017.

yl1 yl2

ym1
ym2

xl1 xl2

xm1
xm2



Braitenberg vehicles-like agents in 
active inference

F ≈
1
2 (πzl1

(yl1 − μl1)
2 + πzl2

(yl2 − μl2)
2 + πzm1

(ym1
− μm1

)2 + πzm2
(ym2

− μm2
)2

+πwm1
(μm1

− μl2)
2 + πwm2

(μm2
− μx1

)2 − ln(πzl1
πzl2

πzm1
πzm2

πwm1
πwm2

))

Variational free energy for fixed-form VI

·μl1 = − k(πzl1
(μl1 − yl1) + πwm2

(μl1 − μm2
))

·μl2 = − k(πzl2
(μl2 − yl2) + πwm1

(μl2 − μm1
))

·μm1
= − k(πzm1

(μm1
− ym1

) + πwm1
(μm1

− μl2))
·μm2

= − k(πzm1
(μm2

− ym2
) + πwm2

(μm2
− μl1))

·a1 = −k(πzm1
(ym1

− μm1
)
∂ym1

∂a1
+ πzm2

(ym2
− μm2

)
∂ym2

∂a1
)

·a2 = −k(πzm1
(ym1

− μm1
)
∂ym1

∂a2
+ πzm2

(ym2
− μm2

)
∂ym2

∂a2
)

Variational updates

Perception Action



The physics of the problem

Forces


Torques


Agent’s body


…



The belief space of the problem?

Forces


Torques


Agent’s body


…

Forces


Torques


Agent’s body


…

=


=


=


=

Generative Process Generative Model=



The belief space of the agent

=


=


=


=

Forces


Torques


Agent’s body


…

Forces


Torques


Agent’s body


…

Forces


Torques


Agent’s body


…
See also:

- Baltieri, M. and Buckley, C. L. (2019). “Generative models as parsimonious descriptions of sensorimotor loops.” 

(Commentary to Brette (2019): Is coding a relevant metaphor for the brain? Behavioral and Brain Sciences.)

- Baltieri M., Buckley C.L. and Bruineberg J., “Predictions in the eye of the beholder: an active inference account of 

Watt governors." Proceedings of the International Conference on Artificial Life, Montreal, Canada, 2020

- Mannella F., Maggiore F., Baltieri M. and Pezzulo G. (2021), “Active inference through whiskers” (accepted at 

Neural Networks)



Generative models, a spectrum

Controlling the world 
with approximate models

Where our 
model(s) are

Reconstructing a 
copy of the world

Braitenberg

vehicles

SLAMWorld models
https://en.wikipedia.org/wiki/

Simultaneous_localization_and_mapping#/media/
File:Ouster_OS1-64_lidar_point_cloud_of_intersection_of_Folso

m_and_Dore_St,_San_Francisco.png



More traditional example:PID

Set-point control where:


✤ P term (negative feedback, delta rule, 
Rescorla-Wagner)


✤ D term dampens oscillations


✤ I term deals with step changes, e.g., 
external unexpected inputs

https://en.wikipedia.org/wiki/
Proportional%E2%80%93integral%E2%80%93derivativ

e_controller#/media/File:PID_en.svg



Applications

✤ Engineering (everywhere really, e.g., 
cruise controllers, thermostats)


✤ Biology (e.g., chemotaxis in E. Coli, 
gene regulatory networks)


✤ Psychology (e.g., adaptive behaviour 
beyond delta rule)

https://www.freeimages.com/photo/fridge-1325918

Andrews, Burton W., Tau-Mu Yi, and Pablo A. Iglesias. "Optimal noise filtering in the 
chemotactic response of Escherichia coli." PLoS computational biology 2.11 (2006): e154.



PID controllers as linear generative 
models

Generative model
y = x + z
y′￼= x′￼+ z′￼

y′￼′￼= x′￼′￼+ z′￼′￼

Fa + Fg + Fr

Fcar
(wind)

λ(t)
(varying slope)

·x = x′￼= − α(x + v) + w
·x′￼= x′￼′￼= − α(x′￼+ v′￼) + w′￼

·x′￼′￼= x′￼′￼′￼= − α(x′￼′￼+ v′￼′￼) + w′￼′￼

F = rga(t)Tm(1 − β( ω
ωm

− 1)
2)

Fg = mg sin λ
Fr = mg Cr sgn( ·s)

Fa =
1
2

ρ Cd A ·s2

m
d2s
dt2

= F − Fd

Fd = Fg + Fr + Fa

Equation of motion (example)

(disturbances)

Baltieri, M. and Buckley, C. L. (2019). “PID Control as a Process of Active Inference with Linear Generative Models.” 
Entropy, 21(3), 257.



A problem with PID parameters

✤ How are (free) parameters                   determined? Not even obvious what they mean.


✤ Huge (really massive) literature but, so far, mostly based on trial-and-error, look-up tables, heuristics, 
experience, etc.

a(t) = kpe(t) + ki ∫
t

0
e(τ)dτ + kd

de(t)
dt

e(t) = r − y(t)

kp, ki, kd

(Standard

PID control)

Åström, Karl Johan, Tore 
Hägglund. Advanced PID control. 2006.

Franklin, Gene F., et al. Feedback control of 
dynamic systems. 2014.

> 2000 citations (first edition, > 6000) 

> 100 pages on how to find k’s

> 6000 citations

> 300 pages on how to find k’s



A solution (?) in active inference

Gains                are precisions of fluctuations expressed in higher 
embedding orders (i.e., considering coloured noise in continuous time).


They can be optimised with a simple 2nd order minimisation scheme

kp, ki, kd

··μγ̃ = −
∂F
∂μγ̃

(μγ̃ = {μγ, μ′￼γ, μ′￼′￼γ} = {kp, ki, kd})

Recently used with 

mixed results, so more

tests will be needed!

Baltieri, M. and Buckley, C. L. (2019). “PID Control as a Process of Active Inference with Linear Generative Models.” 
Entropy, 21(3), 257.



Learning gains with active inference 

Integral absolute error (IAE) 
between two zero-crossings 
(~ oscillations):

IAE = ∫
t+τ

t
e(t) dt

Real (log-)precisions

or (log-)gains

Agent’s estimates of (log-)precisions

or (log-)gains =/= real (log-)precisions

(target)



Bayes in classical control

Duality of inference and control (more later):


✤ Integral control is equivalent to inference on hidden (constant) inputs


Great! But got scooped by another paper…


✤ … in 1971 (although relatively ignored),


✤ generalising this to polynomial hidden inputs of arbitrary order (n orders —> n+1 integrations),


✤ see review: Johnson, Carroll D. "On observers for systems with unknown and inaccessible 
inputs." International journal of control 21.5 (1975): 825-831.



Bayes for PID design

(Following Åstrom and Hägglund (2001))


Performance:


✤ load disturbance response, how a controller reacts to changes in external inputs, e.g. a step input


✤ set-point response, how a controller responds to different set-points over time


✤ measurement noise response, how noise on the observations impacts the regulation process


Robustness:


✤ robustness to model uncertainty, how uncertainty on the plant/environment dynamics affects the 
controller

Åström, Karl Johan, and Tore Hägglund. "The future of PID control." Control engineering practice 9.11 (2001): 1163-1175.



Bayes as a design framework

Assumptions:


✤ Unknown (hyper)parameters 


✤ Re-parametrisation for non-
negativity 

πz̃ → μπz̃

μπz̃
= exp (μγ˜̃z)

F ≈
1
2 [μπz (y − μx)2 + μπz′￼(y′￼− μ′￼x)2 + μπz′￼′￼(y′￼′￼− μ′￼′￼x)2

Load disturbance response

+μπw (μ′￼x + α (μx − ηx))2 + μπw′￼(μ′￼′￼x + α (μ′￼x − η′￼x))2 + πw′￼′￼(μ′￼′￼′￼x + α (μ′￼′￼x − η′￼′￼x))2

Set-point response

+pγz (μγz
− ηγz)

2
+ pγz′￼(μγz′￼− ηγz′￼)

2
+ pγz′￼′￼(μγz′￼′￼− ηγz′￼′￼)

2

Measurement noise response

+pγw (μγw
− ηγw)

2
+ pγw′￼(μγw′￼− ηγw′￼)

2
+ pγw′￼′￼(μγw′￼′￼− ηγw′￼′￼)

2
− ln(φ)

Model uncertainty
]

Baltieri, M., “A Bayesian perspective on 
classical control”, Proceedings of the 
International Joint Conference on Neural 
Networks, Glasgow, UK, 2020

{Contexts



From control theory to cognitive 
agents (Claim 1 + Claim 2)

Agent

Environment

Perception Action

Input-output architectures (classical sandwich)

Estimator

Controller

Sensory

stimuli Best


estimates

Copy of

motor


commands

Motor

commands

Perception and action as combined in cognitive (neuro)science

Environment



Action

Estimation (perception) and control 
(action) are separable?

“One may separate the problem of physical realization [of a 
controller] into two stages: computation of the “best 
approximation”           of the state from knowledge of          
for             and computation of           given          .”


“Contributions to the Theory of Optimal Control”
Cognition

Perception

(Environment)
y(t)

̂x(t1)

g( ̂x(t1))
h( ̂x(t1))…

a(t1) = u(t1) = f( ̂x(t1))

– Kalman R. E. (1960)

̂x(t1) y(t)
t ≤ t1 u(t1) ̂x(t1)

The sandwich of 
cognitive science, or 

sense-model-plan-act 
architectures in robotics 
(see also World Models)

https://pixabay.com/photos/toast-vegan-
sandwich-vegan-breakfast-7009956/



The separation principle

Classic result in control theory (cf. “certainty equivalence” in 
econometrics and separation principle in information theory) for 

linear systems:


LQG (Linear Quadratic Gaussian) control = 


Kalman filter (estimator) + Linear quadratic regulator (controller)

R E V I E W

Closed-loop optimization: models of sensorimotor integration
Instead of focusing on average behavior, which reflects neural informa-
tion processing somewhat indirectly, sensorimotor integration can be
modeled much more directly via closed-loop optimization24–32. Here
both sensory and motor noise are incorporated in the biomechanical
model, and performance is optimized over the family of all possible
feedback control laws.As explained next, this class of models can address
all phenomena that open-loop models address, and many more.

What is optimal feedback control, and how is it related to optimal
open-loop control? Both optimization procedures start with a cost
defining the task goals, as well as an initial state (Fig. 1). Open-loop
optimization then yields a ‘desired’ movement. Because open-loop
control makes little sense in the presence of noise, the movement plan
is usually thought to be executed by a feedback controller—which
uses some servo mechanism to cancel the instantaneous deviations
between the desired and actual state of the body. That mechanism,
however, is predefined, and is not taken into consideration in the
optimization phase. In contrast, closed-loop optimization treats the
feedback mechanism as being fully programmable, that is, it con-
structs the best possible transformation from states of the body and
environment into control signals. The resulting controller does what-
ever is needed to accomplish the task: instead of relying on precon-
ceived notions of what control schemes the sensorimotor system
might use, optimal feedback control lets the task and biomechanical
model dictate the control scheme that best suits them. This may yield
a force-control scheme in an isometric task where a target force level
is specified, or a position-control scheme in a postural task where a
target limb position is specified. In less trivial tasks, however, the opti-
mal control scheme will generally be one that we do not yet have a
name for. Such flexibility, however hard to grasp, matches the flexibil-
ity and resourcefulness apparent in motor behavior39.

The numerical methods used to approximate optimal feedback
controllers are complex55–61, and computationally expensive. One

class of such methods—temporal difference reinforcement learn-
ing59—have been used with remarkable success to model many
aspects of reward-related neural activity62–65. Almost all available
methods are based on the fundamental concept of long-term per-
formance, quantified by an optimal cost-to-go (or value) function.
For every state and point in time, this function tells us how much
cost (or reward) is expected to accumulate from now until the end of
the movement, assuming we behave optimally. Box 1 clarifies the
optimal cost-to-go function, its importance in the computation of
optimal controls, and its potential role in future analyses and models
of motor cortical activity.

The above discussion implied that feedback controllers map actual
body states into control signals. But when the state of a stochastic plant
is observable only through delayed and noisy sensors, the controller
has to rely on an internal estimate of the state (Fig. 1b). The resulting
controls are optimal only when the state estimator is also optimal—
that is, Bayesian. Such an estimator takes into account sensory data,
recent control signals, knowledge of body dynamics, as well as its ear-
lier output, and weights all these sources of information regarding the
current state in proportion to their reliability. In modeling practice one
typically uses a Kalman filter—which is the optimal estimator when
the dynamics and sensory measurements are linear and the noise is
Gaussian, and provides a good approximation in other cases57.A num-
ber of studies suggest that perception in general66, and online state
estimation in particular67–69, are based on the principles of Bayesian
inference. A key feature of optimal estimators is their ability to antici-
pate state changes before the corresponding sensory data have arrived.
This requires either explicit or implicit knowledge of body dynamics,
that is, an ‘internal model’. There is a growing body of psychophysi-
cal70–73 and neurophysiological74,75 evidence in support of this idea,
although critics point out that some of it is indirect76. The formation
of internal models through adaptation was initially interpreted in the
context of movement planning70; recent results53,77–80 however paint a
much more complex picture, and suggest the kind of flexibility that
optimal feedback control affords (E.T., Adv. Comput. Motor Control,
2002, http://www.acmc-conference.org). Here I am only referring to
what are usually called internal forward models—as distinguished
from internal inverse models. The latter are thought to transform task
goals into motor commands, but because this is the job of a controller,
I believe the ‘inverse model’ terminology should be avoided.

Although the distinction between open- and closed-loop control
was traditionally seen as a dichotomy worth debating, researchers
have increasingly realized that one is simply a special case of the
other81. Because the optimal feedback controller is driven by an opti-
mal state estimate rather than raw sensory input, it responds appro-
priately to any information supplied by the estimator—regardless of
whether that information reflects immediate sensory data, or past
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Figure 1 Schematic illustration of open- and closed-loop optimization.
(a) The optimization phase, which corresponds to planning or learning,
starts with a specification of the task goal and the initial state. Both
approaches yield a feedback control law, but in the case of open-loop
optimization, the feedback portion of the control law is predefined and not
adapted to the task. (b) Either feedback controller can be used online to
execute movements, although controller 2 will generally yield better
performance. The estimator needs an efference copy of recent motor
commands in order to compensate for sensory delays. Note that the
estimator and controller are in a loop; thus they can continue to generate
time-varying commands even if sensory feedback becomes unavailable.
Noise is typically modeled as a property of the sensorimotor periphery,
although a significant portion of it may originate in the nervous system.
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e.g., Todorov (2004)

Todorov, Emanuel. "Optimality principles in sensorimotor control." Nature neuroscience 7.9 (2004): 907-915.



Linear case, Kalman filter (KF) and linear quadratic regulator LQR, for a generalisation see 
Todorov (2008)


LQE and LQR both solve a Riccati Equation (RE)


✤ KF


✤ LQR

The duality of estimation and 
control

ẏ(x) = q0(x) + q1(x)y(x) + q2(x)y
2(x)

Ṗ =CC
T +AP + PA

T � PH
T (DD

T )�1
HP

�V̇ =Q+ATV + V A� V BR�1BTV

Todorov, Emanuel. "General duality between optimal control and estimation." 2008 47th IEEE 
Conference on Decision and Control. IEEE, 2008.



The duality of estimation and 
control - (roughly)

✤ KF integrates RE forwards in time, LQR backwards.


✤ Estimation and control seem to solve the same type of (inference) problem.


✤ Techniques from Bayesian inference can be applied to (stochastic) optimal control and 
vice-versa (e.g. KL-control, path integral control, control as inference, planning as 
inference, active inference)


✤ Approximate Bayesian Inference (ABI) appears when exact inference is unfeasible 
(most of the interesting cases)



The dual role of estimation and 
control

✤ Dual role =/= duality


✤ Usually, estimator and controller are two separate modules (i.e., 
factorisable generative model, to some extent at least), see LQG


✤ However many interesting problems involve exploration/
exploration problem or dual control in control theory, Feldbaum 
(1960), non-factorisable/non-separable



Modular minds and the separation 
principle

Perception

Cognition

Action

Robotics and AI,

classical sandwich


in cog. science

Estimation/inference

(Complicated stuff or 

“just inference”, à la Friston)

Optimal control

Kalman(-Bucy)

filter

(Complicated stuff)

Linear Quadratic 

Regulator

Cog. (neuro)science Control theory,

separation principle



What about active inference?

Estimator

Controller
Motor


commands

Copy of

motor


commands

Copy of

motor


commands

Sensory

stimuli Best


estimates

Active inference is biased inference, i.e. inputs are assumed to be unknown, both external 
disturbances and internal motor commands

Baltieri, M. and Buckley, C. L. (2018). “The modularity of action and perception revisited using control theory 
and active inference.” Proceedings of the International Conference on Artificial Life, Tokyo, Japan, 2018.



LQG vs active inference

m =1kg

Sliding block on a frictionless surface,

target: x = 0, x’ = 0

x = 0

Force

applied

Fig. 1: The generative process, a double integrator. The
double integrator models the motion of a system with a single
degree of freedom, corresponding to a block of mass=1kg
placed on a surface with no friction. The block is initialised at
a random position with a random velocity and needs to stop,
x
0 = 0, at position x = 0.

reliability of estimates of both position and velocity (the red
line in the phase space), using a Kalman-Bucy filter. In LQG,
accurate estimates are necessary to then enact the LQR com-
ponent implementing a negative feedback mechanism based
on estimates x̂ rather than true hidden states x. In Fig. 3 we
introduced a new external force not modelled by the agents,
equivalent to a disturbance from the environment (black line in
Fig. 3b). Fig. 3a then shows that the agents are incapable of
regulating their position/velocity against this unknown input
(blue lines), after an initial convergence towards the desired
state, they in fact move away from it when the unexpected
force is introduced. Furthermore, these agents are incapable
of correctly inferring their trajectories, providing inaccurate
estimates of their sensed variables (red lines). In Fig. 3b we
see that all of these agents attempt to counteract the effects of
unexpected stimuli (they minimise their velocity after the force
is introduced), however the lack of an appropriate mechanism
to track their position correctly (e.g., integral action) pushes
them away from the target.

B. The double integrator with active inference

To solve the same control problem, active inference relies
on the generation of predictions of proprioceptive sensations
(position, velocity as in LQG, and also acceleration in this
case), followed by the implementation of actions in the world
via (trivial) reflex arcs. The proprioceptive modality is es-
sentially treated as other inputs (vision, audition, etc.) and
estimates/predictions are generated using the same generative
model taking advantage of incoming proprioceptive sensations.
This produces a considerably different control system, with
state estimates and actions now created by the same model,
making it hard to clearly separate processes of perception
and action. The copy of motor control signals (cf. efference
copy [40]), necessary in standard LQG settings to meet the
observability constraints of Kalman-Bucy filters [16], [17] is

Target

(a)

(b)

Fig. 2: The double integrator solved using LQG. (a) Five
examples with different initial conditions showing in blue the
observed trajectories of different blocks in the phase-space
and in red the agent’s estimates of the same trajectories. (b)
Actions taken by the five agents.

not included in this formulation, as explained in section III.
Active inference postulates in fact that direct representations
of the causes or actions a of self-generated sensations need not
be discounted during the prediction of new incoming sensory
inputs. This could be seen as a limitation of active inference,
but in general this speaks to the robustness of this approach
in face of unknown inputs (i.e., motor actions produced by
an agent or exogenous forces from the environment), see
[36]. In this framework, inputs can also be estimated using
an appropriate generative model of the world dynamics [30],
a feature thought to be fundamental in biological systems
[41]. Simple and effective approximations are also possible,
for example with integral control, thought to be the most
basic heuristic dealing with the problem of uncertain inputs
in biological systems down to the unicellular level [41], [42]
and already shown to be consistent with formulations of active

encoded variational free energy defined in [24], [30] (without
constants):

F ⇡ � lnP (y,x,v)
���
x=µx,v=µv

(5)

the free energy for a generic linear multivariate system be-
comes then:

F ⇡ 1

2

⇣
y � Ĉµx

⌘T
⇧z

⇣
y � Ĉµx

⌘
+

+
⇣
µ0

x � Âµ̂x � B̂µv

⌘T
⇧w

⇣
µ0

x � Âµx � B̂µv

⌘
+

� ln
��⇧z

��� ln
��⇧w

��+ (m+ n) ln 2⇡

�
(6)

where we explicitly replaced x,v with their expectations
µx,µv since under the Laplace assumption this represents
the best estimate of x,v (i.e., covariances of the approximate,
variational density can be recovered analytically [24], [30]).
Variables m,n represent the length of vectors y and x
respectively. Expectations µx play the same role of estimates
x̂ in LQG, we simply decided to use a notation consistent
with some of our previous work [24], [32], [36]. We also
defined precision matrices ⇧z,⇧w as the inverse of covariance
matrices ⌃z,⌃w and used | · | to define the determinant of
a matrix. It is important to highlight that, in general, the
covariance matrices used in the generative model can be
different from the ones used to describe the environment or
generative process [32], [33]. To simplify the already heavy
notation we will however represent them in the same way.

The recognition dynamics, encoding perception and action
in a system minimising free energy [24], [30] and equivalent
to estimation and control functions respectively, are imple-
mented in standard active inference formulations as a gradient
descent scheme minimising the free energy with respect to the
variables µx for perception/estimation:

µ̇x = Dµx � @F

@µx
= µ0

x + Ĉ
T⇧z

⇣
y � Ĉµx

⌘
+

+ Â
T⇧w

⇣
µ0

x � Âµx � B̂µv

⌘

µ̇0
x = Dµ0

x � @F

@µ0
x

= µ00
x �⇧w

⇣
µ0

x � Âµx � B̂µv

⌘
(7)

and actions a for action/control, assuming only that actions
have an effect on observations y [28]:

ȧ = �@F

@a
= �@F

@y

@y

@a
= �@y

@a

T

⇧z

⇣
y � Ĉµx

⌘
. (8)

The estimation expressed in (7) prescribes a generalisation of
Kalman-Bucy filters to trajectories with arbitrary embedding
orders where random variables are not treated as Markov
processes [30]. In (7), we also include an extra term Dµx

that represents the “mode of the motion” (also the mean
for Gaussian variables) for the minimisation in generalised
coordinates of motion [24], [31], with D as a differential
operator shifting the order of motion, i.e., Dµx = µ0

x. More
intuitively, since we are now minimising the components of a
generalised state representing a trajectory rather than a static

variable, variables are in a moving framework of reference
where the minimisation is achieved for µ̇x = µ0

x rather than
µ̇x = 0. Action as expressed in (8) may appear similar to
the traditional LQR/LQG form, but is fundamentally different
since it depends explicitly on observations y rather than
estimated hidden states µx.

IV. THE MODEL

The double integrator is a canonical example used in control
theory and represents one of the most fundamental problems
in optimal control, modelling single degree of freedom motion
of different physical systems [37], [38]. In the case presented
here, this could be thought of as a block on frictionless surface.
In motor neuroscience, this is the simplest model of single-
joint movement [39] and can, in some cases, be easily gener-
alised to multiple degrees of freedom [28]. The standard dou-
ble integrator is usually described as a deterministic system.
The control policy is thus defined using a feedback law applied
directly to the known dynamics, as the full state of the system
is measured with no uncertainty [37]. For the purposes of this
work, where uncertainty and noise are crucial components,
we will introduce process and measurement noise into the
system, making the estimation of hidden states necessary. This
will then allow us to compare LQG and active inference in
one of the simplest possible examples in the control theory
literature with direct applications to the study of motor systems
and behaviour 1. The double integrator is described by the
following state-space model:

ẋ = Ax+Ba+w y = Cx+ z (9)

where matrices A,B,C are defined as:

A =


0 1
0 0

�
B =


0 0
0 1

�
C =


1 0
0 1

�

and covariance matrices ⌃z,⌃w as:

⌃z =


exp(0) 0

0 exp(0)

�
⌃w =


0 0
0 exp(�1)

�

A. The LQG solution to the double integrator
For LQG we implement (3) using the same matrices

A,B,C,⌃z,⌃w specified above and furthermore define:

Q =


1 0
0 1

�
R =


4 0
0 4

�
(10)

with no specific optimisation of these parameters since it is
beyond the scope of this work. For further analysis see for
instance [37]. As we can see in Fig. 2a, the block is effectively
driven to the desired position x = 0 and velocity x

0 = 0
from a set of 5 randomly initialised conditions (position and
velocity are sampled from zero-mean Gaussian distributions,
sd=300). In Fig. 2b we then show the actions over time of
the same 5 example agents, all converging to zero since the
agents effectively reach their desired target. The main feature
of LQG, and from which active inference will depart, is the

1The code is available at https://github.com/mbaltieri/doubleIntegrator

- Baltieri, M. and Buckley, C. L. (2019). “Nonmodular architectures of cognitive systems based on active 
inference.” Proceedings of the International Joint Conference on Neural Networks, Budapest, Humgary, 2019


- Baltieri M. and Buckley C. L., "On Kalman-Bucy filters, linear quadratic control and active inference”, arXiv 
pre-print arXiv:2005.06269 (2020)

Double integrator ~ 

model of single joint



LQG vs active inference

✤ LQG factorises control and inference, active inference doesn’t 
(mostly)


✤ This leads to a formulation in terms of dual control, which in the 
more interesting (finite horizon) cases induces time-independent 
policies


✤ For a similar account, in discrete time, with less control theory 
and more RL/ML see also Millidge (2020)

Millidge, Beren, et al. "On the relationship between active inference and control as 
inference." International Workshop on Active Inference. Springer, Cham, 2020.



Information Control

Stochastic

thermodynamics

Life Cognition

Bayes?

Part 2. (Work in progress)



Friston’s FEP

The ‘free energy principle’ (FEP): a framework based on 
variational inference to (attempt to) model life and cognition. 
Two lines of research:


✤ Use VB and derived techniques to model learning, inference, 
control, etc. (Part 1.)


✤ Use Bayes to identify agents in a stochastic process, given a 
set of conditional (in)dependences (e.g., a Bayesian network) 
and use VB to describe what the agent is and does in terms of 
its beliefs states
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Issues

Assumption:


Stationarity of the stochastic process of interest 
(what’s ‘conditional independence’ otherwise?)
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Biehl M., and Baltieri M.. “The steady 
state Kalman filter and its Markov 
blanket.” (In prep.)



Issues x2

✤ Thresholding of conditional (in)dependencies


✤ Initial identification of internal states outside of the framework


✤ Unclear relation between agents and partitions of stochastic process (e.g., role of co-
parents)


✤ Ad-hoc sparsity constraints on non-equilibrium fluxes of steady-steady distribution


✤ …

Bruineberg J., Dolega K., Dewhurst J. and Baltieri M., “The Emperor’s New Markov Blankets”, (Accepted at 
Behavioral and Brain Sciences, IF > 17)



(All) Work in progress

✤ Context-dependent PID controllers (learning contexts)


✤ Kalman filters as variational inference (natural gradient) - with Takuya Isomura (RIKEN CBS, Japan)


✤ Steady-state Kalman filters and their Markov Blankets - with Martin Biehl (Araya Inc., Japan)


✤ A Bayesian classification of approximate models in psychophysics (based on a correct classification of 
uncertainties) - with Warrick Roseboom and Anil Seth (University of Sussex, UK)


✤ More models of whisking in mice - with Giovanni Pezzulo (CNR, Italy)


✤ Linear quadratic control (cont. time) vs. active inference + applications in neuroscience - with Christopher 
Buckley (University of Sussex)


✤ Detailed-balanced exploration in reinforcement learning - with Taro Toyoizumi


✤ Pytorch (—> JAX?) for continuous control 



Summary

✤ (Approximate) Bayesian inference can be a powerful tool beyond generating accurate 
descriptions of data (building representations vs. controlling the world)


✤ This allows a connection to methods in classical control theory, providing a design 
framework where heuristics otherwise strive


✤ This also then ties into cognitive (neuro)science, helping articulating cognitive 
architectures (duality, the problem of dual control, separability, etc.)


✤ Applications of (A)BI to studies of origins of life (via non-equilibrium physics) are still 
largely work in progress
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