ig. |1—The homeostat, with its four units, each one of which reacts on all the others.

Variational inference in agents, with connections to
control theory and cognitive (neurojscience

Manuel Baltieri
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Roadmap
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&

World models? Reconstructing vs controlling

Generative models of behaviour

A Bayesian angle on classical control

PID controllers and their design process

Variational inference in cognitive (neuro)science

Duality of inference (perception) and control (action) and dual
effects of control (action)

Current directions

Initial motivation:
understand if what
Friston proposes in
neuroscience makes sense

Actual motivation:
understand if variational
updates in belief space
can describe life and
cognition at their core



But first... who am 1?

+  BEng - Computer and software engineering, business administration

+  MSc - Cybernetics, evolutionary computation, computational modelling (neuroscience, biology,
behaviour), artificial life

+  PhD - Theoretical neuroscience, cognitive science, motor control / control theory /cybernetics, stochastic
processes and filtering, artificial life

+  (Mini) Postdoc - Bayesian neural networks, robotics + uncertainty modelling in psychophysics

+  Postdoc (now) - Theoretical neuroscience (motor control and behaviour), filtering, (some) category
theory, (some) non-equilibrium physics



My interests

Stochastic
thermodynamics

Information Control

Bayes?

Life Cognition
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Information Control
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Part 1.

Stochastic
thermodynamics

Information Control

Bayes?

Life Cognition



Background - Claim 1

Perception can be described as a process of (Bayesian) inference or

estimation

IBrcepHar

1 ] ——
rEnE—

NEURAL CODING PROBABILISTIC MODELS
Ediied by | OF THE BRAIN

HHVIH ﬂK"l" and | — Perception and Neural Function
Whilman Dinharde




Background - Claim 2

Action can be described as a process of (optimal) control

718

Internal models for motor control and trajectory planning

Mitsuo Kawato

A number of internal model concepts are nc
neuroscience and cognitive science. These
supported by behavioral, neurophysiologica
furthermore, these models have had their st
functions revealed by such data. In particulz
on inverse dynamics model learning is direc
unit recordings from cerebellar Purkinje cell
forward inverse models describing how dive
environments can be controlled and learnec
recently been proposed. The ‘minimum vari:
another major recent advance in the compu
motor control. This model integrates two fur
approaches on trajectory planning, strongly
both kinematic and dynamic internal models
movement planning and control.

Addresses
ATR Human Information Processing Research La

1’ PN - - . ERATA AT A A

:/ineurosci.nature.com

72 © 2000 Nature America Inc. * http://neurosci.nature.com

Computational principles of
movement heurnscience

Daniel M. Wolpert! and Zoubin Ghahrai

! Sobell Department of Neurophysiology. Institute of Neurolog
? Gatsby Computational Neuroscience Unit, Queen Square, U
Carrespondence should be addressed to D.M.W. (wolpert@he

Unifying principles of movement have emu
review several of these principles and shov
control, estimation, prediction and learnin
ing from the computational approach pro

The computational study of motor control is fund
cerned with the relationship between sensory sig
commands. The transformation from motor com
sensory consequences is governed by the physics

smanét tha smesermlnckalatal cereftarn and aarenses

/natureneuroscience

REVIEW

nature .
neuroscience

Optimality principles in sensorimotor
control

Emanuel Todorov



Background (maths)

State-space models (SSM) formulation

=fv0)+tw : dynamics w ~ N(0, z,, = h(1)) :fluctuations on dynamics

=L v.O)+z : measurements 2~ N(0, 7z, = k(1)) : measurement noise
Probabilistic formulation Variational distribution

Dy xv.0 A =ply|lxv.0,)px |xv,0.4) q(x, )

(gen. model) (measurements) (dynamics)



Background (maths)

Active inference in continuous space and time (Friston’s framework, and what I
used in Part 1.):

fixed-form Gaussian variational inference (+ hierarchical models, here not used)

separation of timescales for hidden states/inputs (fast) and parameters/hyperparameters
(slow, fixed), via explicit mean-field or other assumptions

fast variables updated via free energy, slow variables via path integral of free energy (i.e. free
energy of trajectories, see Archambeau and Opper (2008), but in practice approximated locally)

actions unknown to agents and treated as hidden inputs (although some clever tricks are
implemented to calculate dF/da)

Variational updates

y : observations = action, assuming that y = y(a) —
X : (hidden) states = perception/estimation /inference = «—
v : (hidden) inputs = perception/estimation /inference

0 : (hidden) parameters = learning

A : (hidden) hyperparameters = attention <

Archambeau, Cédric, et al. "Variational inference for diffusion processes." (2008): 17-24.



Lamitations

+ Stationary (time-independent) policies, but wait for the end of the talk
+ No learning of SSM parameters (but see Tschanz et al. 2020)

<+ Fixed-form Gaussian VI

Time-independent vs. time-dependent policies

https:/ / www.freeimages.com / photo/ fridge-1325918 https:/ /unsplash.com/photos /3GbcPmYXVwQ

Tschantz, Alexander, Anil K. Seth, and Christopher L. Buckley. "Learning action-oriented models through active
inference." PLoS computational biology 16.4 (2020): e1007805.



The "usual” generative models

In statistics / ML.:

given observations ‘y’ and labels (categories, classes, states, etc.) ‘x’, find the joint
distribution that best represents the data.

Discriminative model: Generative model:
create a decision boundary generate a distribution of the data
P(x|y)

Regression(s), SVMs, etc. Naive Bayes, HMMSs, AR models, etc.

https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-supervised-learnin



https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-supervised-learning

Example: a generative model in
robotics

Goal: (e.g., find a light/phototaxis)

“place a wheeled robot in a random environment, provide it with (at least) light sensors,
get it to approach the light source (for simplicity, let's assume there’s only one)”

Y - Observations/
measurements: light
Sensors + ...

X - States: light’s
location + commands
to reach it + ...

https:/ / pixabay.com / photos/ mars-mars-rover-space-travel-rover-67522 /

Thrun, Sebastian, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. MIT press, 2005.



Standard solution: SLLAM

Simultaneous Localisation And Mapping (SLAM)

TL;DR: a robot (iteratively) building an estimate of its pose (position
+ orientation) on a map while building an estimate of the map itself



Example: World models

Figure 1. A World Model, from Scott McCloud’s Understanding
Comics. (McCloud, 1993; E, 2012)

' environment )
. action
[ g World models =>

L vEw Replicating a model of
LN the world inside an agent
observation ! >
u 'R C
world model = | MDN-RNN (M) — >
\ / h Original Observed Frame Reconstructed Frame
AL """"""""" action

Figure 8. Flow diagram of our Agent model. The raw observation
1s first processed by V at each time step ¢ to produce z:. The input
into C is this latent vector z; concatenated with M’s hidden state
h: at each time step. C will then output an action vector a: for
motor control, and will affect the environment. M will then take Figure 5. Flow diagram of a Variational Autoencoder (VAE).
the current 2; and action a: as an input to update its own hidden

state to produce h:41 to be used at time ¢ + 1.

Encoder @—' Decoder

Ha, David, and Jurgen Schmidhuber. "World models." arXiv preprint arXiv:1803.10122 (2018).



however...

“...the rule “collect truth for truth’s sake” may be justified when the truth is
unchanging; but when the system is not completely isolated from its
surroundings, and is undergoing secular changes, the collection of truth is
futile, for it will not keep.”

— Ashby W. R. (1958)



Fxample: Braitenberg vehicles
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/
a b
+ +

Braitenberg, Valentino. Vehicles: Experiments in synthetic psychology. MIT press, 1986.




Phototaxis in active inference

Generative model

100 A

80 A

=N g =0 s g

X, = X, + Wy X, = Xp, T Wy, 201

Trajectory

60

yml — xml + Zml ym2 o xmz + Zm2 40 -

_20 -

A
N A

-60 -40 -20 0 20 40 60
60 -

50 A

40 A

30 A

10 A

ectory

Baltieri, M. and Buckley, C. L. (2017). “An active inference implementation of 60 -40 -20
phototaxis.” Proceedings of the European Conference on Atrtificial Life, 2017.

0

20

40

60




Braitenberg vehicles-like agents in
active inference

Variational free energy for fixed-form VI

1

4 ORI e A e

Zml ZmZ ml

+7zwm1(,um1— /4,2)2+7zwm2(,um2— ,uxl)2 In(z, T Ty T T, Ty ))

Variational updates

Perception Action
k( (,l/lll 7y )’[1) 55 ﬂwmz(/’lll = /’lmz)>
Kz, ( )dy o 2
di == JZ' T 1 ﬂ Wi Kom >
k( i, = )+ (= ”m1)> : Y et
k(ﬂ; (//lml AR yml) + 71. (/uml A /’tlz)> a2 == ( Zml(yml e luml) 2 + ﬂ (yI’HQ A /’lmz) aaz >
k(ﬂ- (/um2 g ymz) o Ty (Iumz = lull)>



The physices of the problem

Forces
Torques

Agent’s body



The belief space of the problem?

Forces

Forces

Torques

lorques Generative Model

Generative Process

Agent’s body Agent’s body



The belief space of the agent

Forces =  FEorees

Torques =  Terques
Agent’s body =  Agent'sbody

See also:
Baltieri, M. and Buckley, C. L. (2019). “Generative models as parsimonious descriptions of sensorimotor loops.”
(Commentary to Brette (2019): Is coding a relevant metaphor for the brain? Behavioral and Brain Sciences.)
Baltieri M., Buckley C.L. and Bruineberg J., “Predictions in the eye of the beholder: an active inference account of
Watt governors." Proceedings of the International Conference on Artificial Life, Montreal, Canada, 2020
Mannella F., Maggiore F., Baltieri M. and Pezzulo G. (2021), “Active inference through whiskers” (accepted at
Neural Networks)



Generative models, a spectrum

Reconstructing a Controlling the world
copy of the world with approximate models

/ \ Where our
| model(s) are

z
observation I g
C
world model MDN-RNN (M)
h
action

environment

action

World models SLAM
https:/ /en.wikipedia.org/wiki/ Braitenberg
Simultaneous_localization_and_mapping# / media/
File:Ouster_OS1-64_lidar_point_cloud_of_intersection_of_Folso Vehicles

m_and_Dore_St,_San_Francisco.png



More traditional example:P1D

Set-point control where:

Plant y(t)
Pr%rc‘:eés >

+ P term (negative feedback, delta rule, b
Rescorla-Wagner)

+ D term dampens oscillations

https:/ /en.wikipedia.org/wiki/
: Proportional%E2%80%93integral % E2%80%93derivativ
- [ term deals with Step Changesl €.8- e_controller# /media/ File:PID_en.svg

external unexpected inputs



Applications

+ Engineering (everywhere really, e.g.,
cruise controllers, thermostats)

https:/ / www.freeimages.com /photo/ fridge-1325918

B Diffusion

Ligand

+ Biology (e.g., chemotaxis in E. Coli,

Environment

gene regulatory networks) =
e sggn\ngn s
{ \J Bindin
T @Q@ % P LnOiseg
N V0 0—a)
oo PSYChOIOgY (eg y adaptive behaViourAndrews, Burton W., Tau-Mu Yi, and Pablo A. Iglesias. "Optimal noise filtering in the
beyond delta r llle) chemotactic response of Escherichia coli." PLoS computational biology 2.11 (2006): e154.

| The MIT Press

Books Journals Digital Resources About Contact

Home | Journal of Cognitive Neuroscience | List of Issues | Volume 30, No. 10 | A Control Theoretic
Model of Adaptive Learning in Dynamic Environments

A Control Theoretic Model of
Adaptive Learning in Dynamic
Environments

Harrison Ritz, Matthew R. Nassar, Michael J. Frank
and Amitai Shenhav




PID controllers as linear generative
models

Equation of motion (example) .
Generative model

d?s
mﬁ:F_Fd V=l x=x'=—alx+v)+w
y/:x/_l_Z/ )-C/:x//:_a(x,_l_v,)_l_w,
(disturbances) ot e
Gl ey
CH
Q@ —x
F = rga(t)Tm<1 -~ /3(1 . 1>2> o
a)m Fcar (wind)

F, =mgsin A
s Fa + Fg +F r (varying slope)
F.=mgC_sgn(s) A1)

1 .
F,= 5,0 C,AS

Baltieri, M. and Buckley, C. L. (2019). “PID Control as a Process of Active Inference with Linear Generative Models.”
Entropy, 21(3), 257.



A problem with P1D parameters

o) {0 {1 ) et (Standard
0

PID control)
e(t) =1 = 1)

+  How are (free) parameters kp, ki, kd determined? Not even obvious what they mean.

+  Huge (really massive) literature but, so far, mostly based on trial-and-erroz, look-up tables, heuristics,
experience, etc.

Astrém, Karl Johan, Tore > 2000 citations (first edition, > 6000)
Hagglund. Advanced PID control. 2006. > 100 pages on how to find k’s
Franklin, Gene E., et al. Feedback control of > 6000 citations

dynamic systems. 2014. > 300 pages on how to find k’s
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Abstract:

Classical PID control is a widely used
technique in many industrial applications
due to its good performance and rela-
tively low complexity. Nevertheless, these
regulators are not sufficient in some cases.
This project investigates a novel prob-
abilistic interpretation of PID control.
Under this framework, it is assumed that
only sensed variables are accessible. That
is, no prior information of the process
is available (i.e., plant model). Thus,
the controller is furnished with a simple
generative model that tries to deduce the
measurement causes. This model, which
is refined with every new measurement,
permits designing the PID regulator. The
innovation with respect to the classical
approach is that here the controller gains
encode measurement noise properties
that can be inferred. The model enhance-
ment and the applied control law obey
a biological principle known as free energy.

The thesis proposes to implement this
PID regulator in a refrigeration process.
Specifically, it is aimed to control the
evaporator outlet temperature. Simula-
tion results prove good performance when
dealing with changes in the set-point.
The robustness test, however, shows poor
outcomes as the system’s response is
not able to recover from a small input
disturbance. Furthermore, the controller
is sensitive to subtle changes in certain
parameters when tuning, thus leading to
instability.

‘erence

n higher

ontinuous time).

satiQn SehMEsed with

mixed results, so more
tests will be needed!

Baltieri, M. and Buckley, C. L. (2019). “PID Control as a Process of Active Inference with Linear Generative Models.”

Entropy, 21(3), 257.



L.earning gains with active inference

Real (log-)precisions
or (log-)gains

6 Log-(sensory) precsc&s (= log-Pl gains)

|
i <%l (target)
4 Adaptation Control
|| J Control
S
|
0- I
-2 I
I 20001
—41 | —— [Expek. of log-precision, yy,
i xpjc. of log-precision, u,,
-6 : : ! : :
0 50 100 150 200 250 300 ~ 15001
Time |s) =)
o
L
< 1000 1

Agent’s estimates of (log-)precisions
or (log-)gains =/ = real (log-)precisions

500

Integral absolute error (IAE)
between two zero-crossings
(~ oscillations):

LET
IAE=J le(r)| d
/5
T



Bayes 1n classical control

Duality of inference and control (more later):

+  Integral control is equivalent to inference on hidden (constant) inputs

Great! But got scooped by another paper...
+  ...in 1971 (although relatively ignored),
+  generalising this to polynomial hidden inputs of arbitrary order (n orders —> n+1 integrations),

+  see review: Johnson, Carroll D. "On observers for systems with unknown and inaccessible
inputs." International journal of control 21.5 (1975): 825-831.



Bayes for PID design

(Following Astrom and Hagglund (2001))

Performance:
+ load disturbance response, how a controller reacts to changes in external inputs, e.g. a step input
+  set-point response, how a controller responds to different set-points over time

+  measurement noise response, how noise on the observations impacts the regulation process

Robustness:

+  robustness to model uncertainty, how uncertainty on the plant/environment dynamics affects the
controller

Astrom, Karl Johan, and Tore Hagglund. "The future of PID control." Control engineering practice 9.11 (2001): 1163-1175.



Bayes as a design framework

1

AT

Load disturbance response

i, (@ (= 1))+ i, (] + @ (= 1))+ e () + @ () = 7))

Set-point response

2 2
+pyz </’tyz % ﬂyz> 5 pyzf (/’t;fzr 2 77;/) 5 pyzn (:uyzu e ’7;/Z~>

Measurement noise response

2

Contexts ;

> >
Py, (”Yw ¥ '77w> 0 (”m 7 ’%') T <'“7W" 78 ”yw")

Model uncertainty

- ln(cﬂ)]

Assumptions:
Baltieri, M., “A Bayesian perspective on
+  Unknown (hyper)parameters T = U classical control”, Proceedings of the
. & International Joint Conference on Neural

+  Re-parametrisation for non- Networks, Glasgow, UK, 2020

negativity



From control theory to cognitive
agents (Claim 1 + Claim 2)

Perceptimpahdatpicraashibechines(thasogaitsaa dveicty)science

commands
_____ Controller
Motor
commands



Kstimation (perception) and control
‘action) are separable!

(Environment)

y(1)

Perception
“One may separate the problem of physical realization [of a B

controller] into twe-stages: computation of the “best
approximation’f the statefrom knowledge o@ (1))
for 1 < t; and computation oiven x()." 1

“Contributions to the Theory of Optimal Control”

Cognition
— Kalman R. E. (1960) .
g(x()))
il dwich of A
el h(x(ty))
cognitive science, or o
sense-model-plan-act
architectures in robotics Action
(see also World Models) .
https:/ / pixabay.com/photos/ toast-vegan- Cl(tl) — M(fl) :f(X(l'l))

sandwich-vegan-breakfast-7009956 /



T'he separation principle

Classic result in control theory (cf. “certainty equivalence” in
econometrics and separation principle in information theory) for
linear systems:

LQG (Linear Quadratic Gaussian) control =

Kalman filter (estimator) + Linear quadratic regulator (controller)

Execution
Noise

Controller | Motor comman}/\ _ | Biomechanical

1or2) plant e.g., Todorov (2004)

Y

[

\

Efference
copy

State

\

<«

Estimated
state

Eeti Sensory data Sensory
stimator | /J apparatus

Noise

Todorov, Emanuel. "Optimality principles in sensorimotor control." Nature neuroscience 7.9 (2004): 907-915.



The duality of estimation and
control

Linear case, Kalman filter (KF) and linear quadratic regulator LQR, for a generalisation see
Todorov (2008)

LQE and LQR both solve a Riccati Equation (RE)
() = qo(x) + qu(x)y(z) + g2(2)y* ()
+ KF p—Ccl L AP L PAL P (DD LD

+ LOR -V =Q+ A"V +VA-VBR BTV

Todorov, Emanuel. "General duality between optimal control and estimation." 2008 47th IEEE
Conference on Decision and Control. IEEE, 2008.



The duality of estimation and
control - (roughly)

+ KF integrates RE forwards in time, LOR backwards.
+ Estimation and control seem to solve the same type of (inference) problem.

+ Techniques from Bayesian inference can be applied to (stochastic) optimal control and
vice-versa (e.g. KL-control, path integral control, control as inference, planning as
inference, active inference)

+ Approximate Bayesian Inference (ABI) appears when exact inference is unfeasible
(most of the interesting cases)



The dual role of estimation and
control

+ Dual role =/= duality

+ Usually, estimator and controller are two separate modules (i.e.,
factorisable generative model, to some extent at least), see LQG

+ However many interesting problems involve exploration/
exploration problem or dual control in control theory, Feldbaum
(1960), non-factorisable /non-separable



Modular minds and the separation

principle

Robotics and Al,
classical sandwich
11 C0gQ. Science

Perception

|

Cognition

l

Action

“just inference”, a la Friston)

Control theory,

Cog. (neuro)science , o
separation principle

Kalman(-Bucy)
filter

l l

(Complicated stuff or

Estimation /inference

(Complicated stuff)

l l

Linear Quadratic

Optimal control i



W hat about active inference?

Active inference is biased inference, i.e. inputs are assumed to be unknown, both external
disturbances and internal motor commands

Sensory

stimuli Best

—_— estimates
Estimator
Copy-ot
Potoer
commands
Controller|

Motor

commands

Baltieri, M. and Buckley, C. L. (2018). “The modularity of action and perception revisited using control theory
and active inference.” Proceedings of the International Conference on Artificial Life, Tokyo, Japan, 2018.



1.OQG vs active inference

Sliding block on a frictionless surface,

target: x = 0, X’ = 0 t=Ar+Ba+w y=Cx+z
where matrices A, B, C' are defined as:
Force : 0O 1 0O 0O 1 0
applicd Double integrator ~ A ol (i
-— m =1kg : i 0 O @1 O
model of single joint , :
and covariance matrices .., X, as:
s _ exp(0) 0 s _ |0 0
| > St {) exp(0) Y10 exp(-1)
x=0
Double integrator - LQG Double integrator - Active inference
125- Agent 1 200 ® Agentl
Agent 2 1504 @ Agent2
1001 Agent 3 ® Agent3
Agent 4 1001 @® Agent4
B 751 Agent 5 0 ® Agents
g E 50,
> 50 1 =
S 25 & 04
2 S
0 —501
-25 / —100+ Target
Target
—501 , ‘ , , ~1501 , . , , , , . ,
~150 -100 -50 0 50 -150 -125 —-100 -75 -50 -25 0 25 50
Position (m) Position (m)

Baltieri, M. and Buckley, C. L. (2019). “Nonmodular architectures of cognitive systems based on active
inference.” Proceedings of the International Joint Conference on Neural Networks, Budapest, Humgary, 2019
Baltieri M. and Buckley C. L., "On Kalman-Bucy filters, linear quadratic control and active inference”, arXiv
pre-print arXiv:2005.06269 (2020)



L.LQG vs active inference

+ LQG factorises control and inference, active inference doesn’t
(mostly)

<+ This leads to a formulation in terms of dual control, which in the
more interesting (finite horizon) cases induces time-independent
policies

+ For a similar account, in discrete time, with less control theory
and more RL /ML see also Millidge (2020)

Millidge, Beren, et al. "On the relationship between active inference and control as
inference." International Workshop on Active Inference. Springer, Cham, 2020.



Part 2. (Work i progress)

Stochastic
thermodynamics

Information Control

Bayes?

2o\

Life Cognition



Friston’s FEP

The ‘free energy principle’ (FEP): a framework based on
variational inference to (attempt to) model life and cognition.
Two lines of research:

+ Use VB and derived techniques to model learning, inference,
control, etc. (Part 1.)

+ Use Bayes to identify agents in a stochastic process, given a
set of conditional (in)dependences (e.g., a Bayesian network)
and use VB to describe what the agent is and does in terms of
its beliefs states



Give a sensorimotor
loop represented
using a DAG

Partition the network
according to the extra
assumptions of the
Friston blanket in “Some
interesting observations
on the free energy
principle” or “Parcels
and particles: Markov
blankets in the brain”

to t1 ta e tn

System

Take a slice

Environment with ¢ = y:

par(y,xap) Call the internal
states an “agent

Look at what'’s
inside it

>

>

Agent at to with state u:
pam(xem | y) (exact inference),
or
q(xcar) (approx. inference)

The agent performs
inference inside
the system



Pearl blankets,
inference with a model

System

System

Friston blankets,
inference within a model

Vs

System

The scientist performs

inference outside Consider this model
the system

as a time slice
0 of a process over time

Consider the entire
history of the process

to

to

Unpack agent and
its actions

Environment with ¢ = y:

pap(y:XGPp) The agent performs

inference inside
the system

Agent at ty with state u:
pem (Xear | y) (exact inference),
or
q(xcar) (approx. inference)

tq to



Issues

to t1 to e tn

Assumption:

Stationarity of the stochastic process of interest
(what's “conditional independence’ otherwise?)

Biehl M., and Baltieri M.. “The steady
state Kalman filter and its Markov
blanket.” (In prep.)



Issues x2

+ Thresholding of conditional (in)dependencies
+ Initial identification of internal states outside of the framework

+ Unclear relation between agents and partitions of stochastic process (e.g., role of co-
parents)

+ Ad-hoc sparsity constraints on non-equilibrium fluxes of steady-steady distribution

Bruineberg J., Dolega K., Dewhurst J. and Baltieri M., “The Emperor’s New Markov Blankets”, (Accepted at
Behavioral and Brain Sciences, IF > 17)



All) Work i progress

+ Context-dependent PID controllers (learning contexts)
+ Kalman filters as variational inference (natural gradient) - with Takuya Isomura (RIKEN CBS, Japan)
+ Steady-state Kalman filters and their Markov Blankets - with Martin Biehl (Araya Inc., Japan)

+ A Bayesian classification of approximate models in psychophysics (based on a correct classification of
uncertainties) - with Warrick Roseboom and Anil Seth (University of Sussex, UK)

+ More models of whisking in mice - with Giovanni Pezzulo (CNR, Italy)

+ Linear quadratic control (cont. time) vs. active inference + applications in neuroscience - with Christopher
Buckley (University of Sussex)

+ Detailed-balanced exploration in reinforcement learning - with Taro Toyoizumi

+ Pytorch (—>JAX?) for continuous control



Summary

+ (Approximate) Bayesian inference can be a powerful tool beyond generating accurate
descriptions of data (building representations vs. controlling the world)

+ This allows a connection to methods in classical control theory, providing a design
framework where heuristics otherwise strive

+ This also then ties into cognitive (neuro)science, helping articulating cognitive
architectures (duality, the problem of dual control, separability, etc.)

+  Applications of (A)BI to studies of origins of life (via non-equilibrium physics) are still
largely work in progress
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