

First-principles definitions of agents

Manuel Baltieri

9th Feb 2023

Outline

Three classes of first-principles definitions of agents

- Prediction-based
- Causality-based
- Relational
- Conclusion

Important note

The following frameworks have various goals:

- Defining individuality
- Defining autonomy
- Defining agency

*

. . .

I will look at them as characterising agency/agents!

Agency in the eye of the beholder

Prediction-based methods

Prediction-based methods

- Main idea: treating a system *AS-IF* it was an agent; this helps predicting its behaviour
- Inspiration: Dennet's intentional stance
- Tools: information theory, filtering theory, Bayesian inference, reinforcement learning, etc.

an Examples:

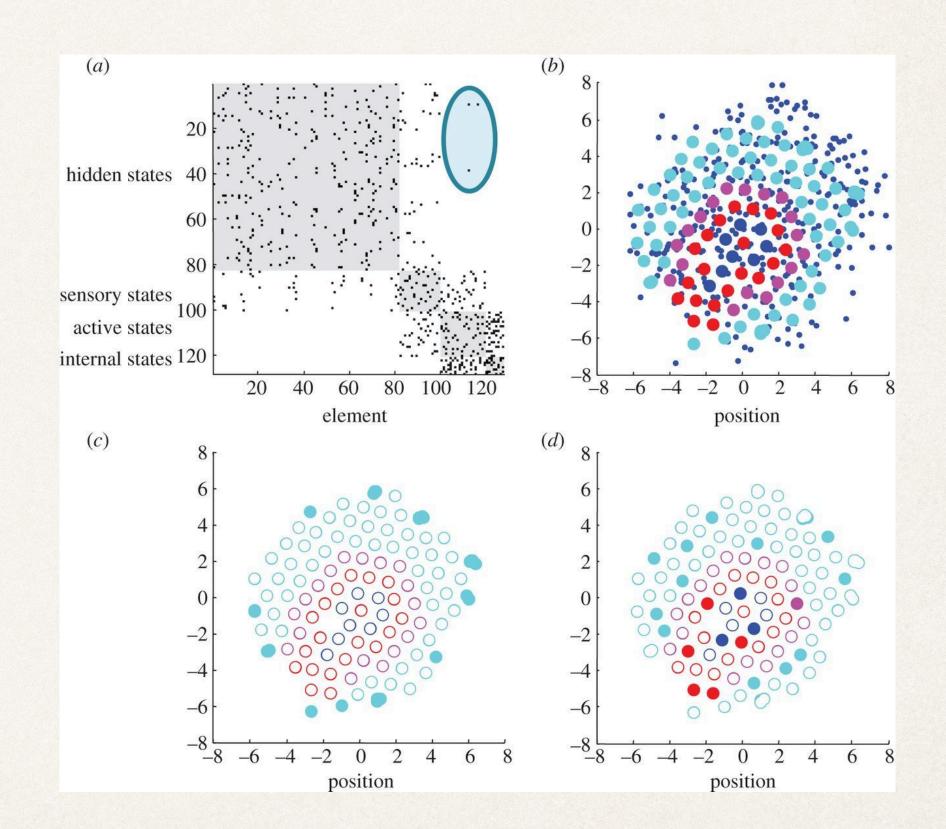
- The free energy principle
- The informational individual

etc.

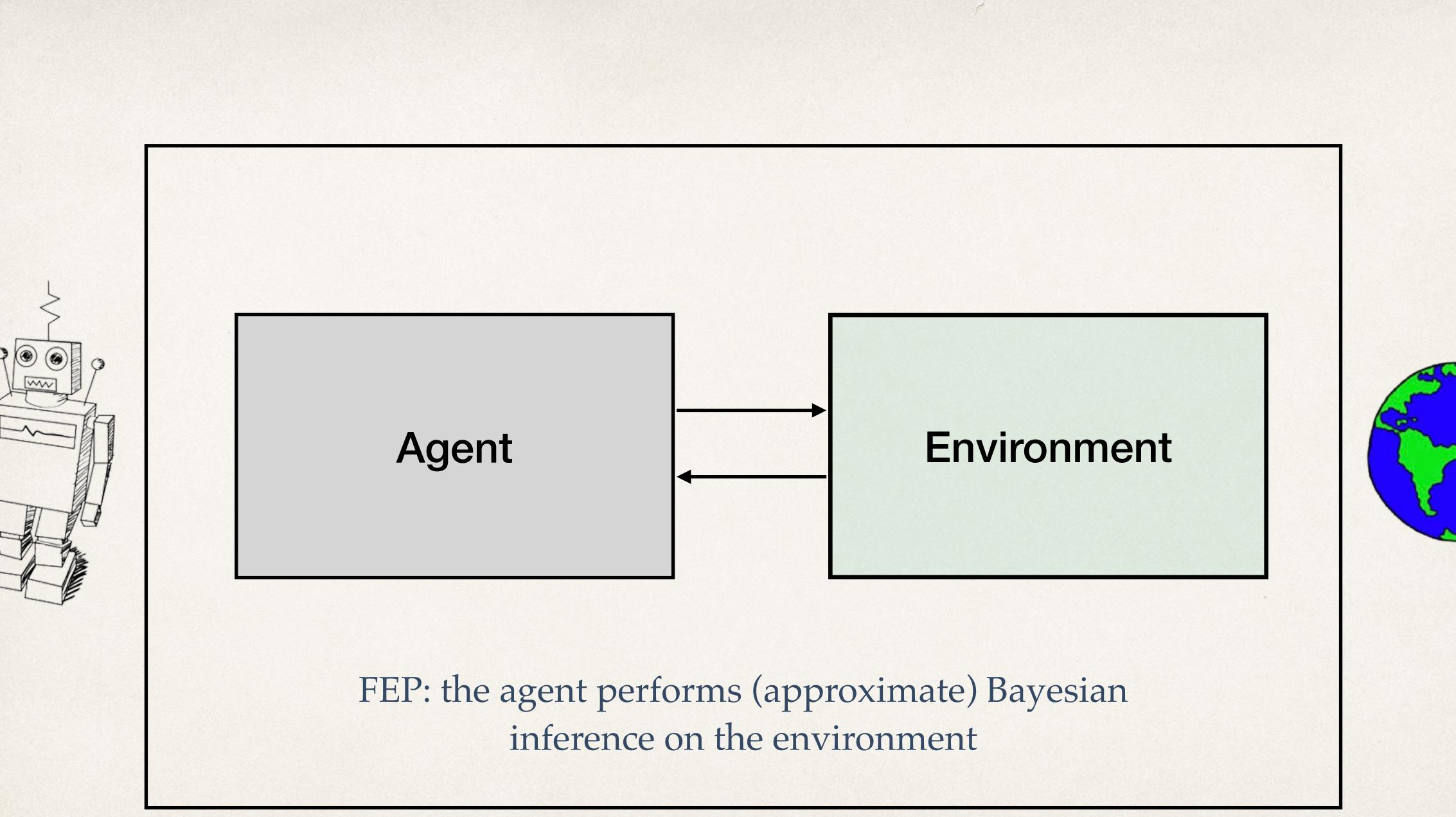
Behavioural compression

The free energy principle

- A foundational theory of agents, (living) systems, "things"
- A thing is a "thing" if and only if it minimises free energy
- Markov blankets as a veil that separates internal from external states



Friston, K. (2013). Life as we know it. *Journal of the Royal Society Interface, 10*(86), 20130475.



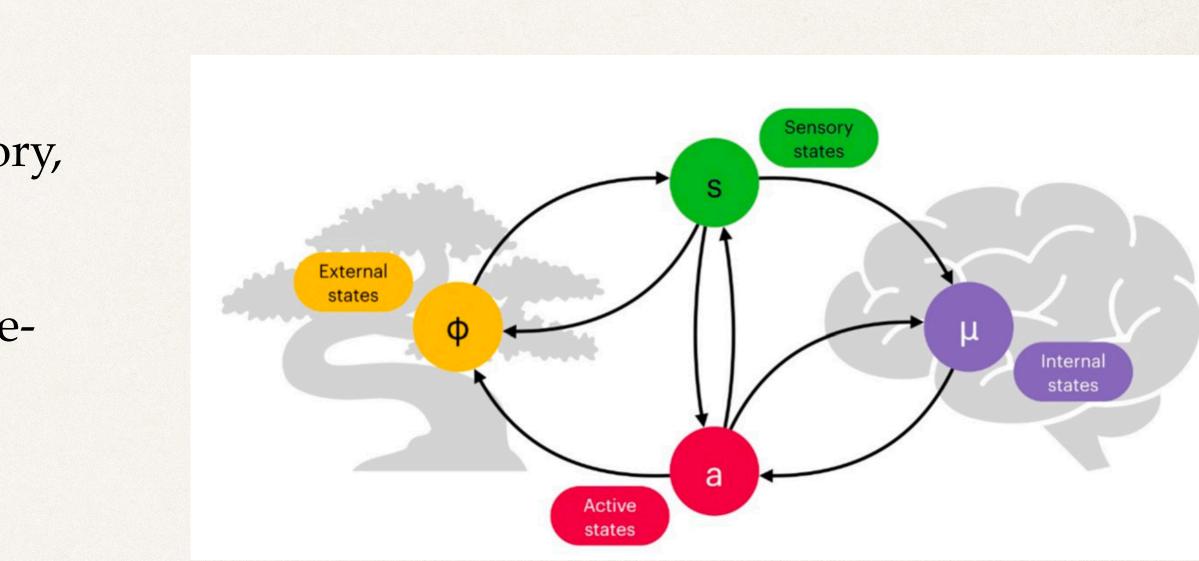
The FEP - pros and cons

Strengths

- Connections to biology, neuroscience, control theory, reinforcement learning and physics
- Agency at multiple scales (attempt of finding scalefree theory)

Limitations

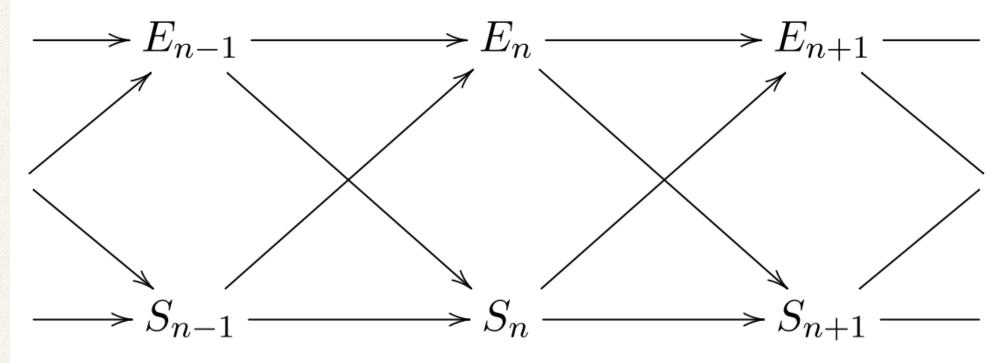
- Technically limited to stationary processes
- Ontological commitments (based just on probabilities?)
- Quantum systems are agents?



Bruineberg, J., Dołęga, K., Dewhurst, J., & Baltieri, M. (2021). The Emperor's New Markov Blankets. Behavioral and Brain Sciences, 45, e183.

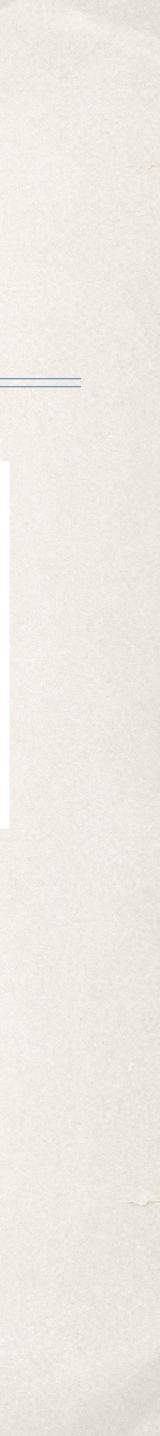
Information individual

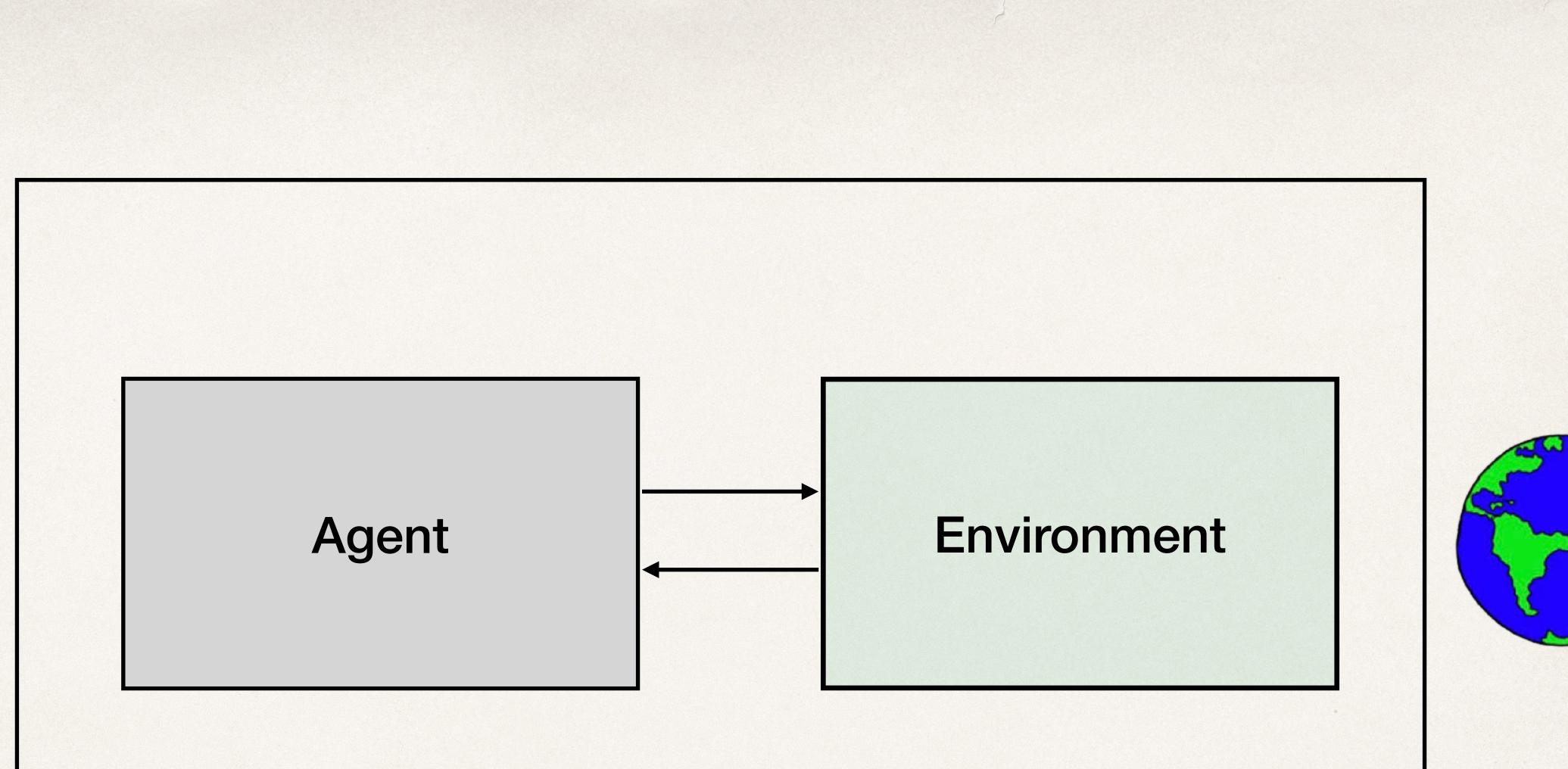
- Information individual: *I*(*S_n*, *E_n*; *S_{n+1}), how much current state of agent + environment help predict next agent's state*
- * First decomposition: $I(S_{n+1}; S_n) + I(S_{n+1}, E_n | S_n)$, predictive information of the agent + transfer entropy from environment
- Second decomposition: $I(S_{n+1}; E_n) + I(S_{n+1}, S_n | E_n)$, complementary view

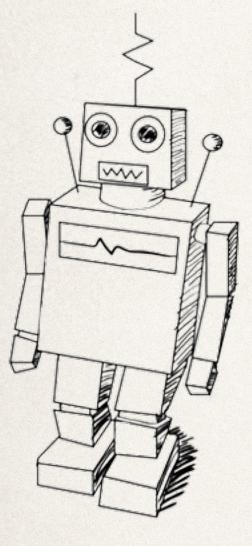


 $I(S_n, E_n; S_{n+1}) = I(S_{n+1}; S_n) + I(S_{n+1}; E_n | S_n)$ $= I(S_{n+1}; E_n) + I(S_{n+1}; S_n | E_n)$

Krakauer, D., Bertschinger, N., Olbrich, E., Flack, J. C., & Ay, N. (2020). The information theory of individuality. Theory in Biosciences, 139, 209-223.







Information individual: an agent is good at predicting its future self

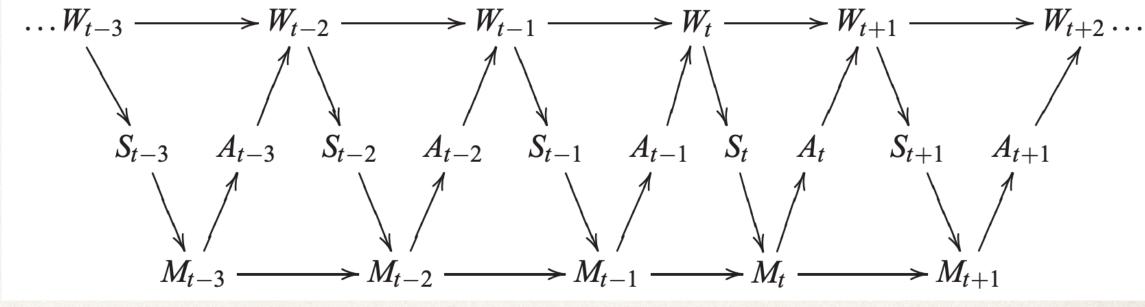
Information individual - pros and cons

Strengths

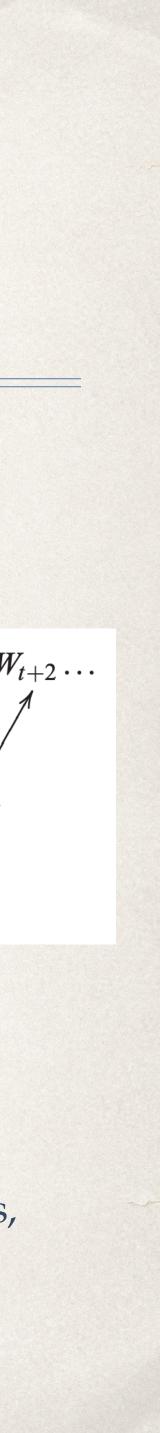
- No assumptions about the underlying physics *
- Multi-level agency (group, individual, etc.) *
- Challenging the role of boundaries (e.g., cell * membrane)

Limitations

- No clear rule to generate agent-environment partitions *
- No action ~
- Only for discrete time systems *

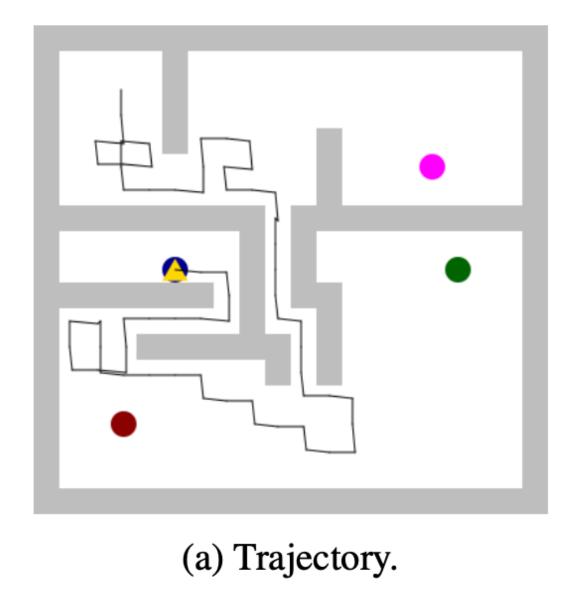


Tishby, N., & Polani, D. (2011). Information theory of decisions and actions. Perception-action cycle: Models, architectures, and hardware, 601-636.



Behavioural compression

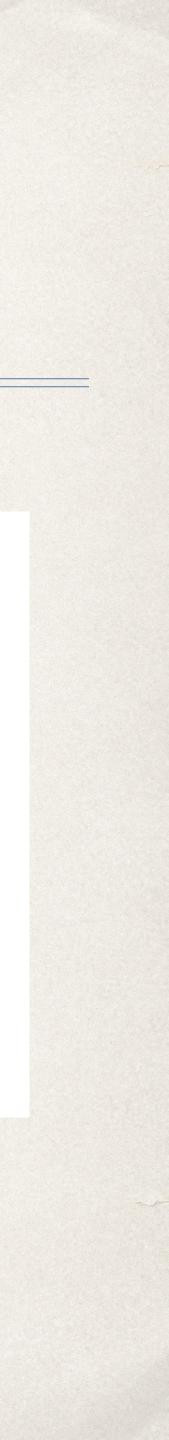
- A formalisation of the intentional stance (cf., a stone, a thermostat and a game-playing computer)
- Use inverse reinforcement learning to find the best possible goal for a system
- Use methods from algorithmic probability to find the simplest description of a trajectory of a system (no goals)
- Compare RL agents with policies for planning to reactive systems with step-by-step predictions

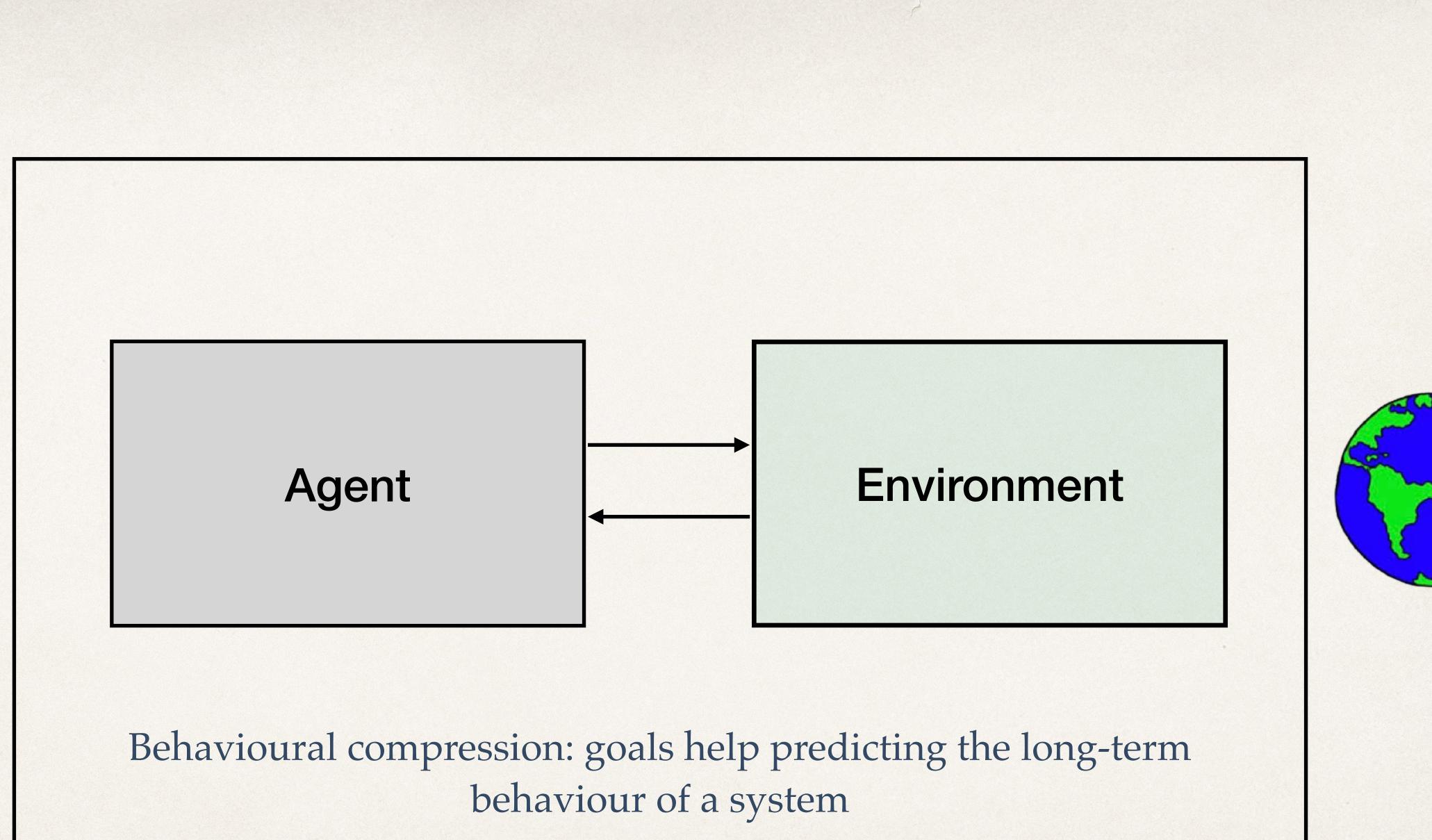


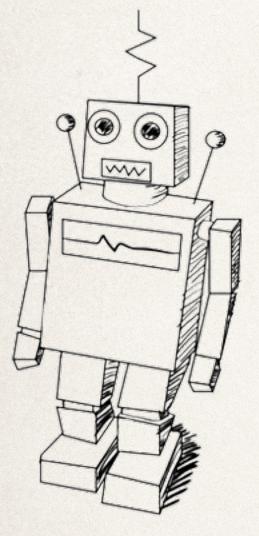
	Device	Agent	
v_1	83.53	72.04	
v_2	0.00	1.00	
v_3	11.49	0.00	
$egin{aligned} v_1 &= -\ln P(y\!x_{1:T} M_?) \ v_2 &= P(M_? y\!x_{1:T}) \ v_3 &= -\ln P(M_? y\!x_{1:T}) \end{aligned}$			

(b) Posteriors of the device and agent mixtures.

Orseau, L., McGill, S. M., & Legg, S. (2018). Agents and devices: A relative definition of agency. arXiv preprint arXiv:1805.12387.







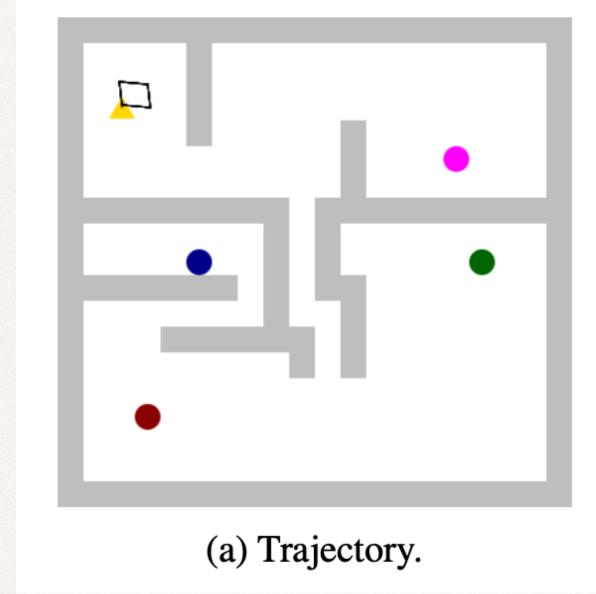
Behavioural compression - pros and cons

Strengths

- Formalising intentional stance *
- Allows to consider different goals and compression * strategies

Limitations

- Not clear what happens when behaviour can't be * compressed
- Can't discriminate between agents, and systems * behaving AS IF they were agents
- Unclear whether different choices (goals, predictors) • would influence the final results

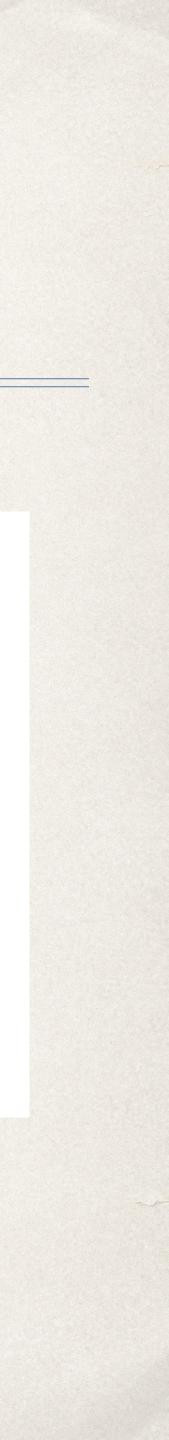


	Device	Agent		
v_1	18.01	37.48		
v_2	1.00	0.00		
v_3	0.00	19.40		
$v_{1} = -\ln P(y_{1:T} M_{?})$ $v_{2} = P(M_{?} y_{1:T})$				

$$v_3 = -\ln P(M_2 | yx_{1:T})$$

(b) Posteriors of the device and agent mixtures.

Orseau, L., McGill, S. M., & Legg, S. (2018). Agents and devices: A relative definition of agency. arXiv preprint arXiv:1805.12387.



Prediction-based methods

Advantages

- They take into account the role of observers
- Agnostic about the underlying system (we just need some notion of information)
 Different existing measures of information
- Generally flexible enough to consider multiple
 Can't distinguish between "real" and "as-if" agents

Disadvantages

Observer-dependent measures (agency is nothing else?)

Agency as a property intrinsic to a system

Causality-based methods

Causality-based methods

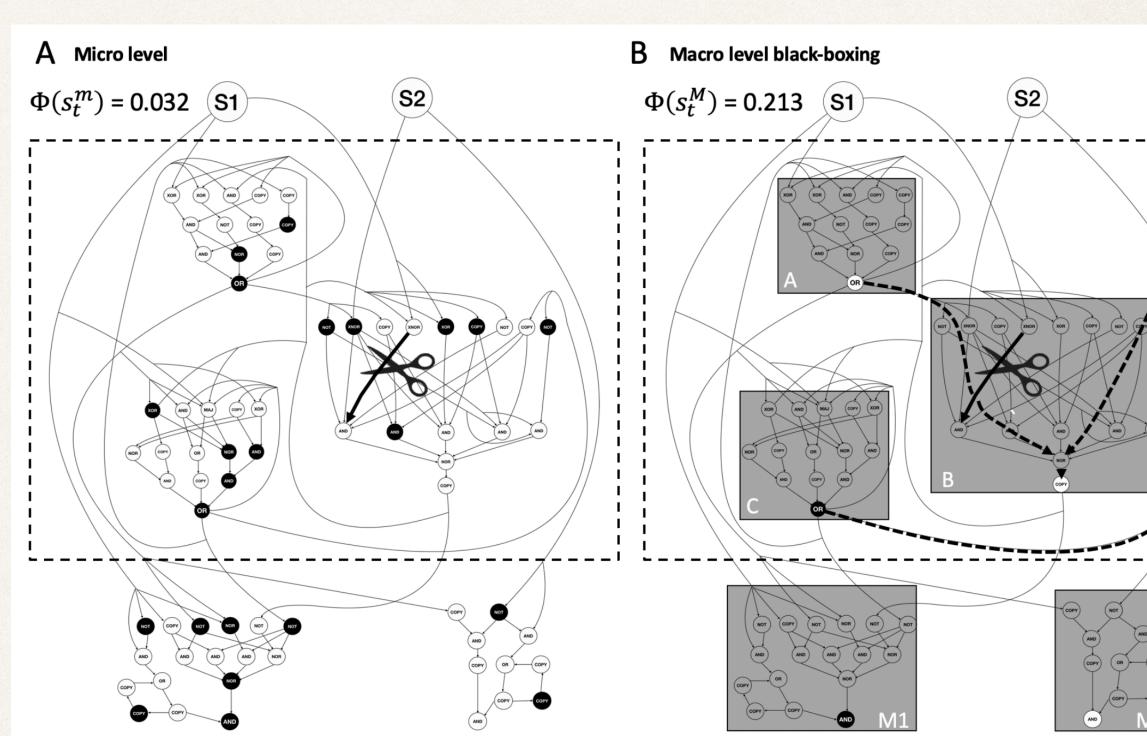
- Main idea: actions are causal
- Inspiration: Davidson's "<u>causalism</u>", mental states cause actions in the world; Pearl causality
- Tools: do calculus, information theory, Bayesian networks, etc.

Examples:

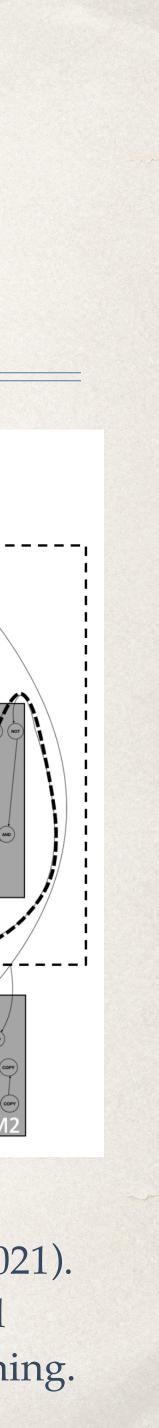
- Integrated information theory
- Semantic information
- Mechanised causal graphs

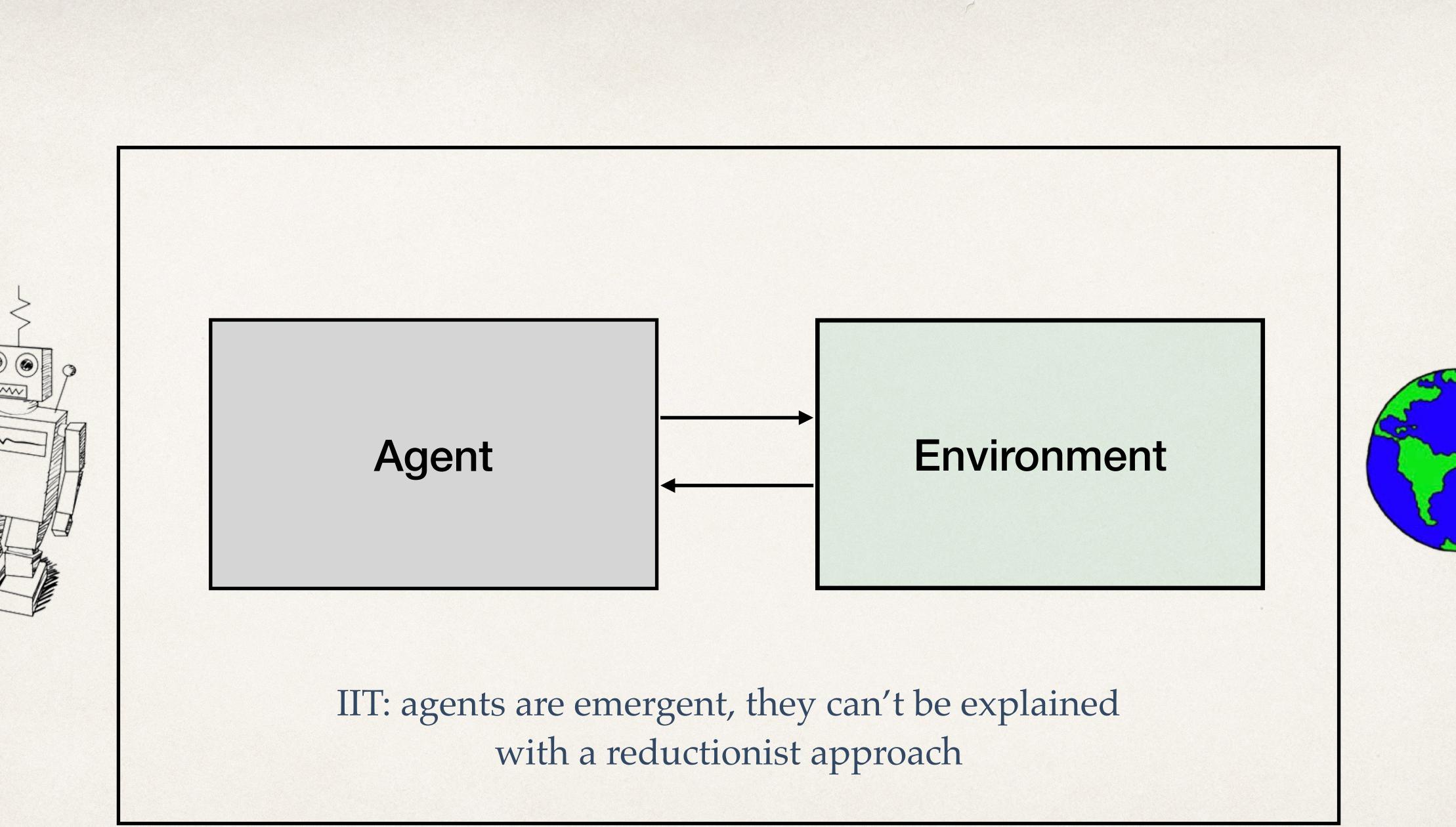
Integrated information theory

- A foundational theory of consciousness (originally), also used for agency recently
- IIT quantifies the "intrinsic irreducibility" of a system: how much cause-effect power of the whole cannot be reduced to its parts
- The highest intrinsic irreducibility of all possible levels determines the system of interest (conscious system, agent, etc.)



Albantakis, L., Massari, F., Beheler-Amass, M., & Tononi, G. (2021). A macro agent and its actions. In Top-Down Causation and Emergence (pp. 135-155). Cham: Springer International Publishing.





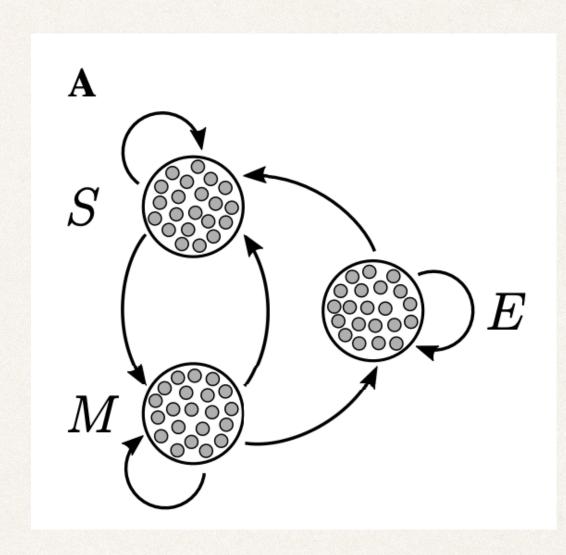
IIT - pros and cons

Strengths

- Formalising agency discovery at multiple scales *
- Formalising a way to consider emergence vs. * reductionist explanations
- Causal vs observational analysis *

Limitations

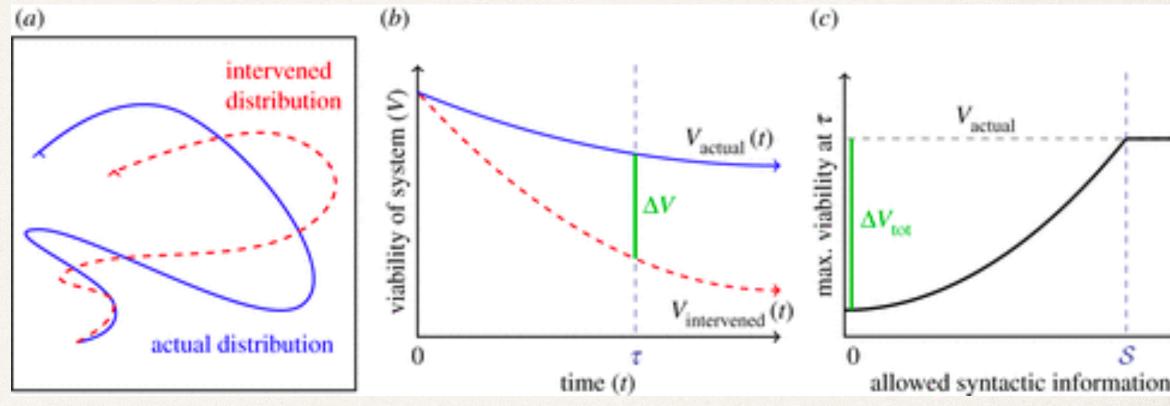
- Agency (consciousness) only defined at a single scale *
- General, potential issues with IIT (4.0 version just came * out to fix some, or add more?)
- Only for discrete time systems *



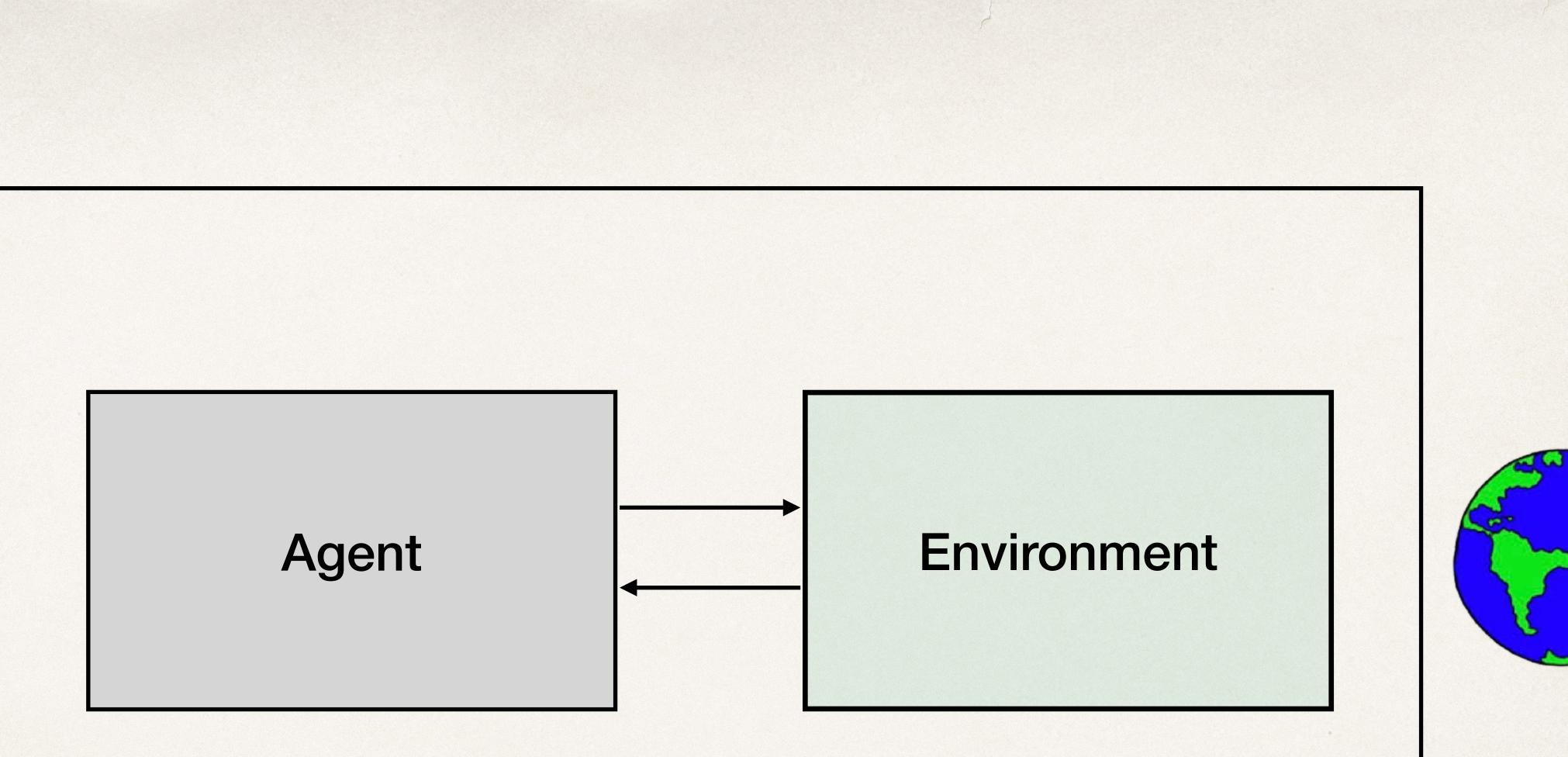
Aguilera, Miguel, and Ezequiel A. Di Paolo. "Integrated information and autonomy in the thermodynamic limit." ALIFE 2018: The 2018 Conference on Artificial Life. MIT Press, 2018.

Semantic information

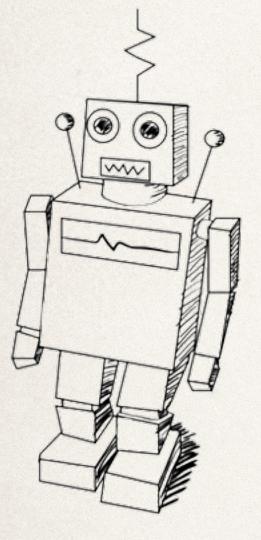
- Shannon information captures correlations,
 cannot be used to quantify value (semantics)
- Semantic information is a way to provide noncorrelational ("scrambled") proxies of standard information measures after choosing a particular goal (e.g., survival)
- Store semantic information: "scrambled" mutual information between agent and environment
- Observed semantic information: "scrambled" transfer entropy between environment and agent



Kolchinsky, A., & Wolpert, D. H. (2018). Semantic information, autonomous agency and non-equilibrium statistical physics. Interface focus, 8(6), 20180041.



2



Semantic info: agents are systems with a high degree of stored semantic information and observed semantic information

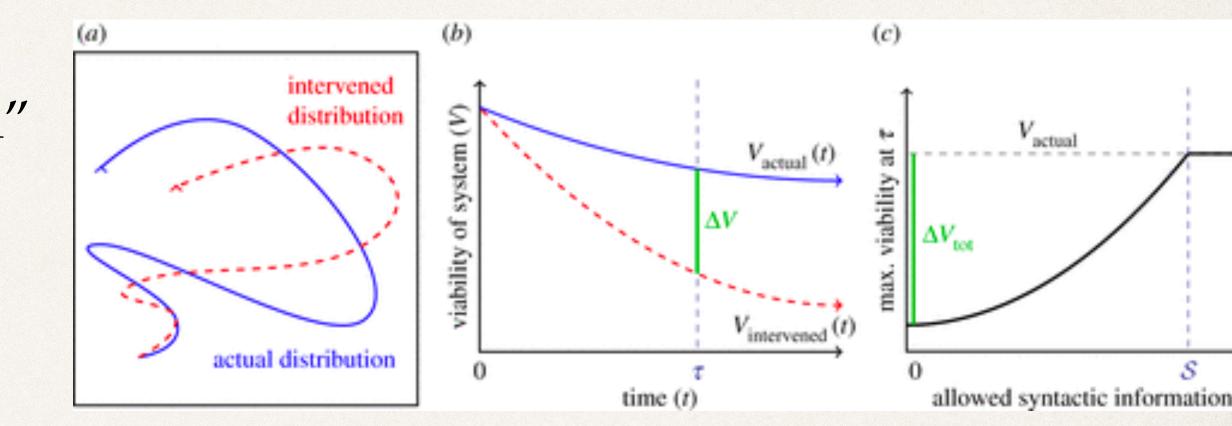
Semantic information - pros and cons

Strengths

- Goal-agnostic theory (we can swap "survival" * with something else)
- Clarifying causal vs observational analysis *

Limitations

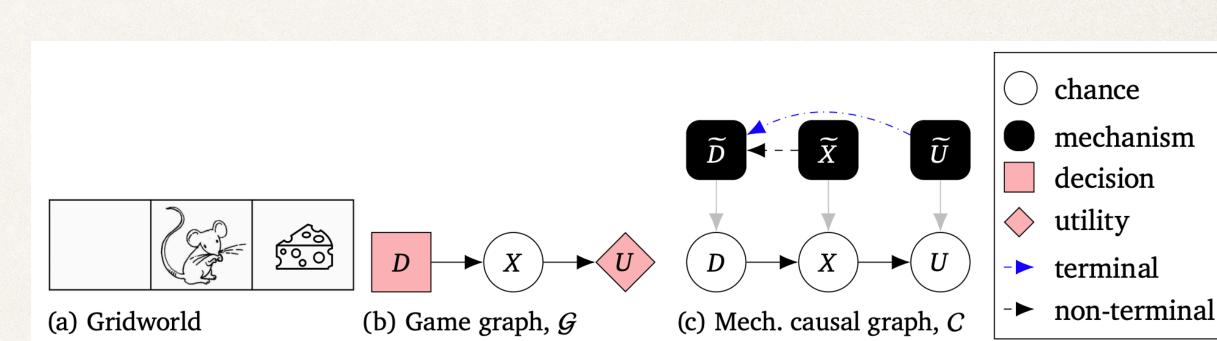
- Doesn't settle on a specific goal for agents *
- Assuming we know the agent



Kolchinsky, A., & Wolpert, D. H. (2018). Semantic information, autonomous agency and non-equilibrium statistical physics. Interface focus, 8(6), 20180041.

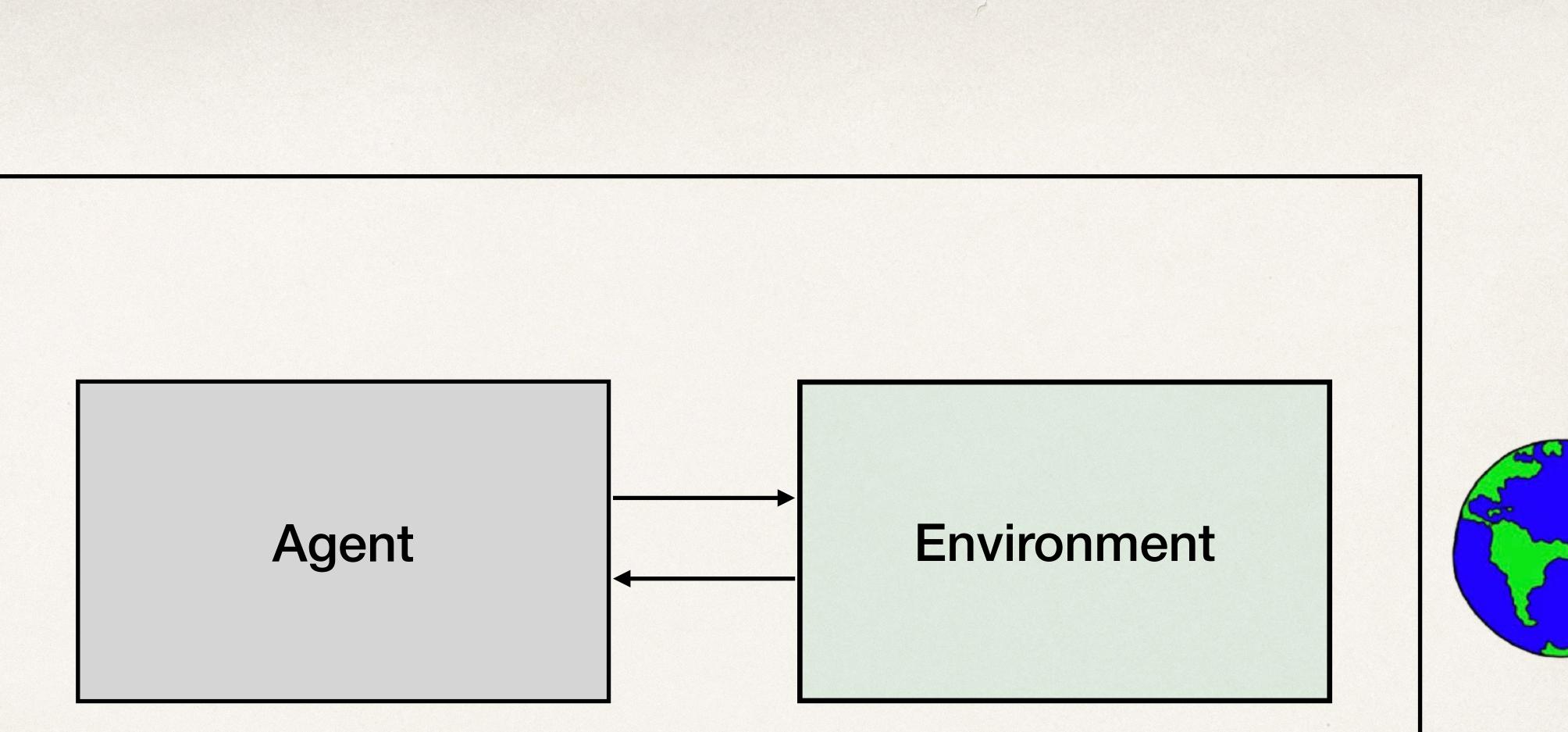
Mechanised causal graphs

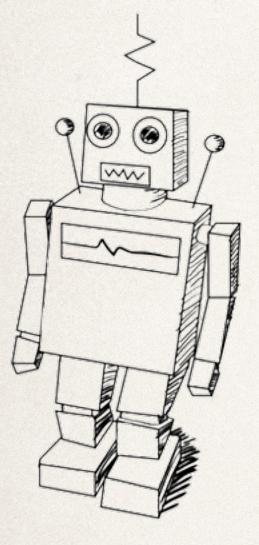
- Augment a graph reprinting decisions with "mechanisms"
- Mechanisms are parameters of "objective" variables
- Dependencies on mechanisms generally "reverse" causal chain (they need interventional data)



Kenton, Z., Kumar, R., Farquhar, S., Richens, J., MacDermott, M., & Everitt, T. (2022). Discovering Agents. arXiv preprint arXiv:2208.08345.







Mechanised causal graphs: "agents are systems that would adapt their policy if their actions influenced the world in a different way"

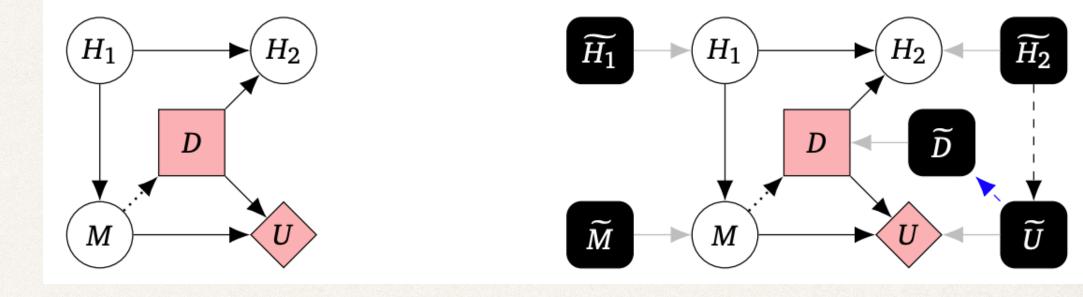
Mechanised causal graphs - pros and cons

Strengths

- Fully "Pearlian" description of agency *
- Can pick up some interesting features of agency * boundaries (what needs to be included and change given a certain mechanism, e.g., learning in RL)

Limitations

- Variables are chosen a-priori *
- Interventions in the real world are difficult to obtain *
- Are "soft" interventions (repeated observations) * required for agency?



Kenton, Z., Kumar, R., Farquhar, S., Richens, J., MacDermott, M., & Everitt, T. (2022). Discovering Agents. arXiv preprint arXiv:2208.08345.

Causality-based methods

Advantages

- They take into account intrinsic notions of agency
- Pearl's causality is arguably the best account of causality we have
- Observer-independent

Disadvantages

- Is action necessarily related to causality?
- Choice of variables in causal models is somewhat subjective (cf. micro-state of a system)
- Actually, not really clear if these methods are observer-independent..

Relational methods

Agency with respect to something

Relational methods

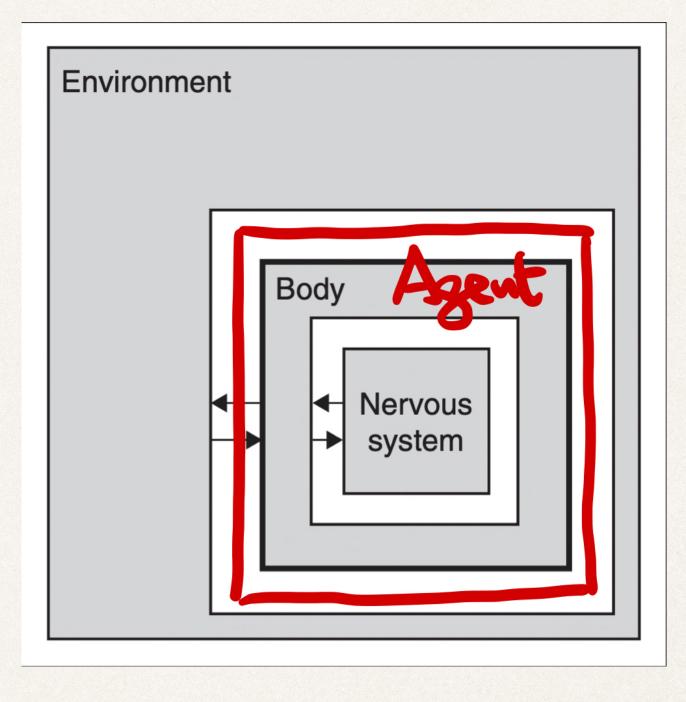
- Main idea: agency is in the way a system relates to other systems (environment, observer, other systems)
- Inspiration: cybernetics, Beer's work
- Tools: dynamical systems theory, systems theory, category theory, etc.

Examples:

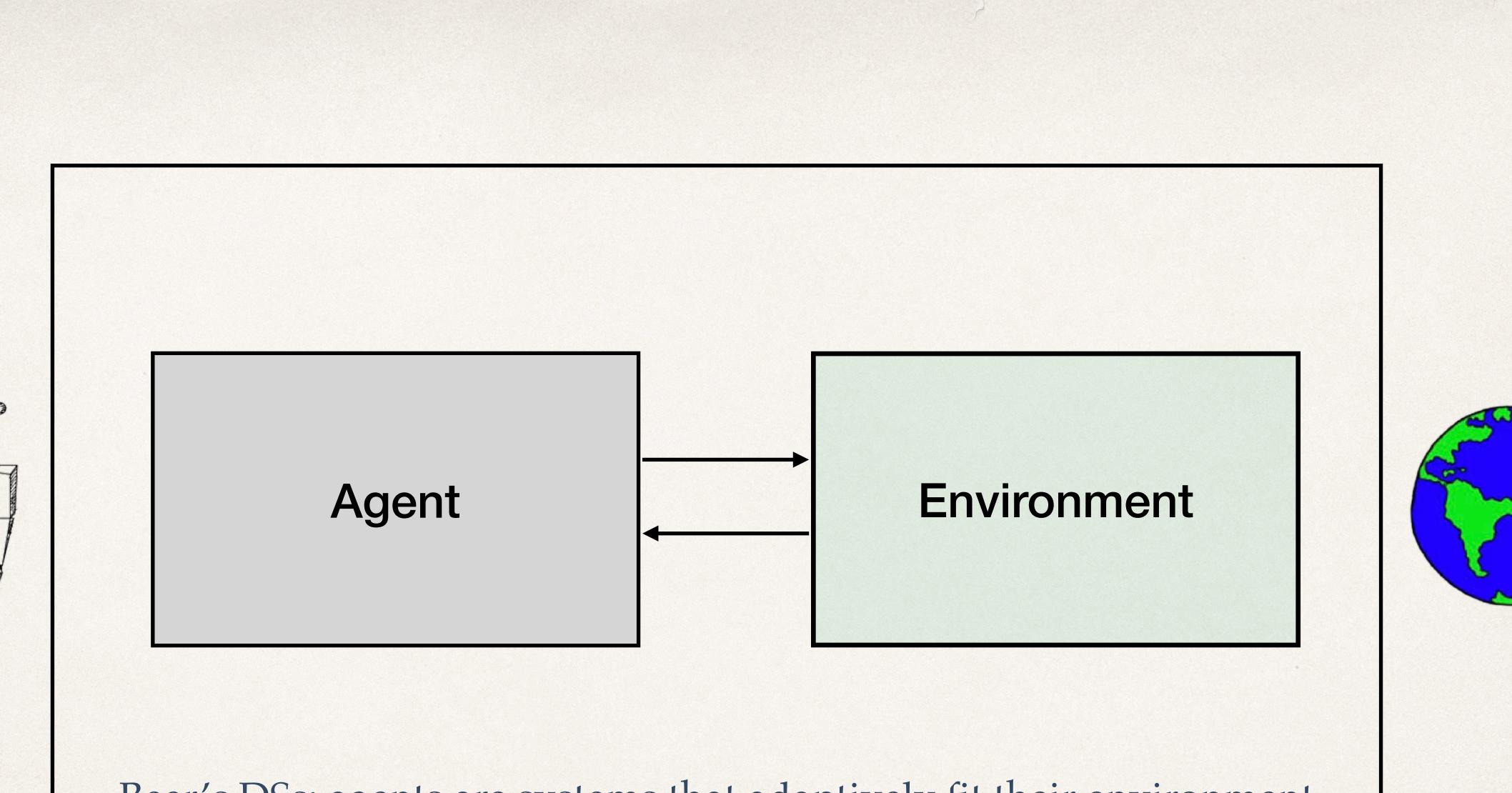
- Dynamical systems for agentenvironment interactions
- Bayesian interpretation map
- Categorical agent-environment interactions

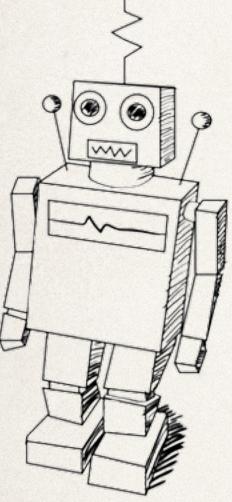
Dynamical systems for agent-environment interactions

- Take 3 dynamical systems and couple them
- Define adaptive fit: "An animal [agent] is adaptively fit to an environment only so long as it maintains its trajectory within this constraint volume [= the agent's existence in state-space] despite the perturbations that it receives from its environment."



Beer, R. D. (2008). The dynamics of brain–body–environment systems: A status report. Handbook of Cognitive Science, 99-120.





Beer's DSs: agents are systems that adaptively fit their environment

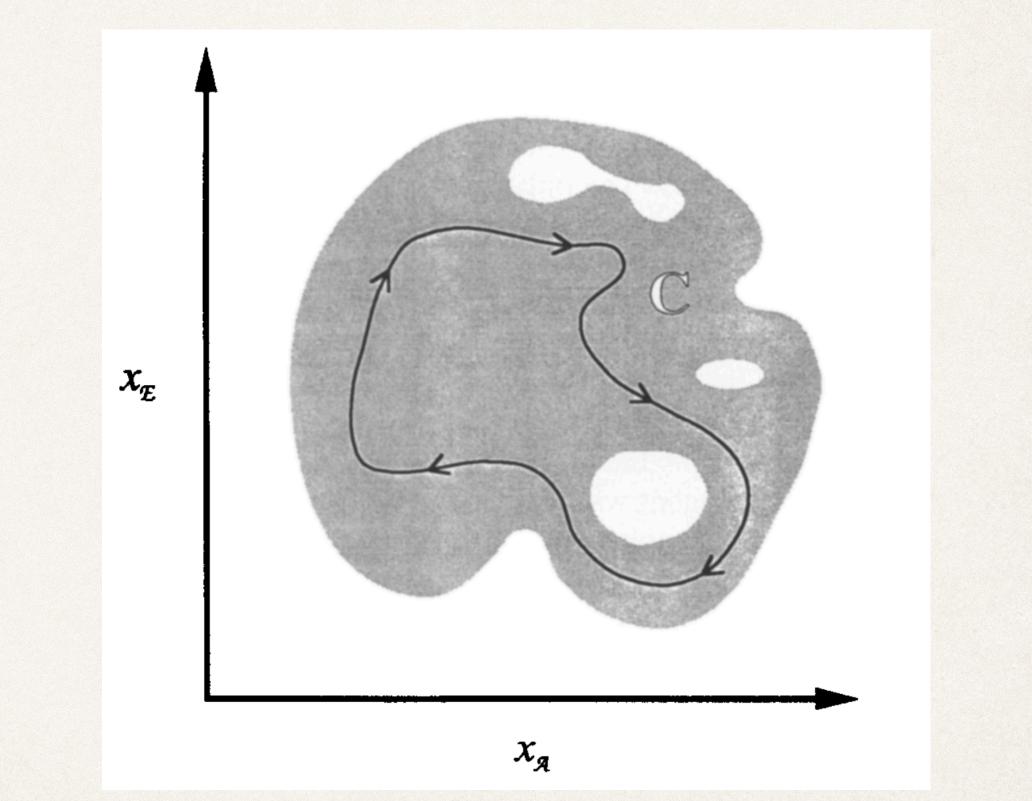
DSs for agent-environment interactions - pros and cons

Strengths

- Few assumptions
- Environment plays a role (adaptive fit)

Limitations

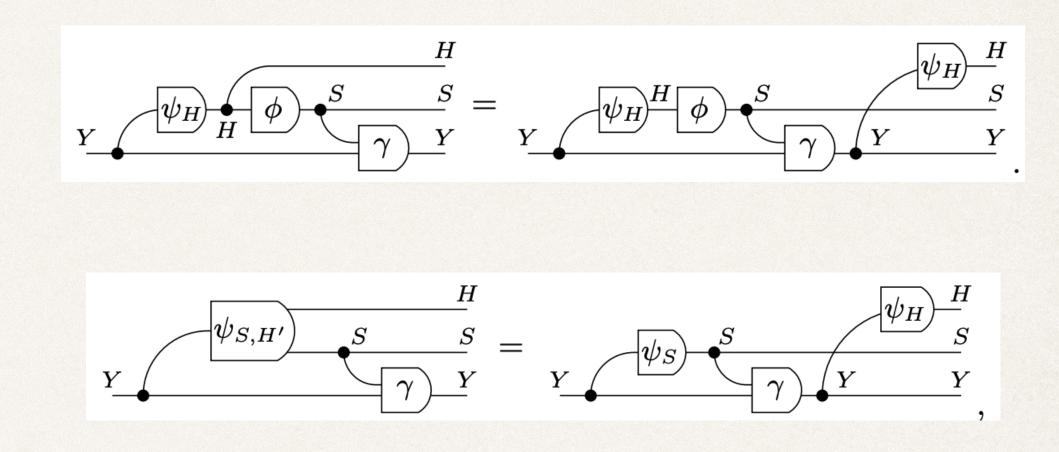
- "Adaptive fit" is never formalised
- Systems other than agents might show
 "adaptive fit"?
- Agents are assumed?



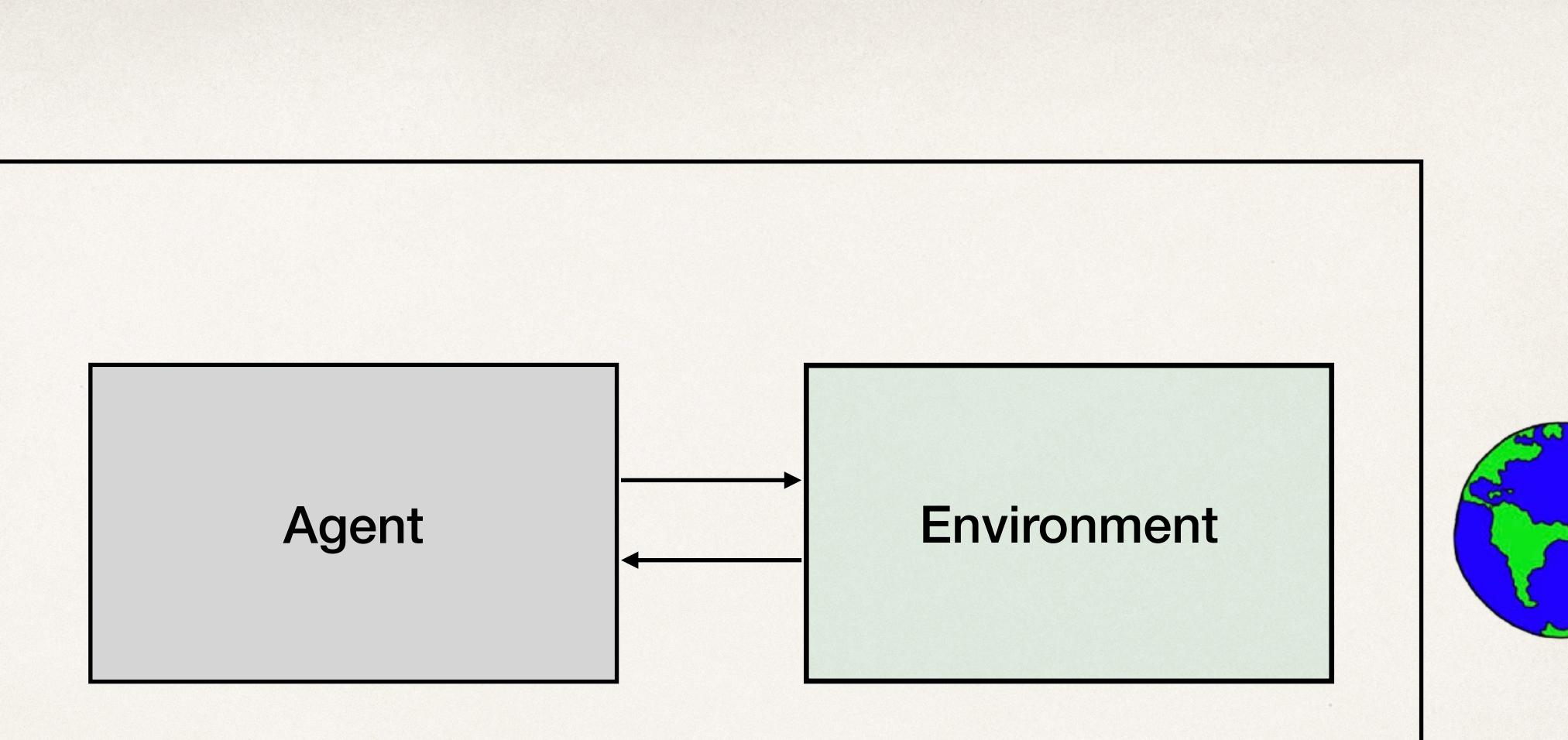
Beer, R. D. (1995). A dynamical systems perspective on agentenvironment interaction. Artificial intelligence, 72(1-2), 173-215.

Bayesian interpretation map

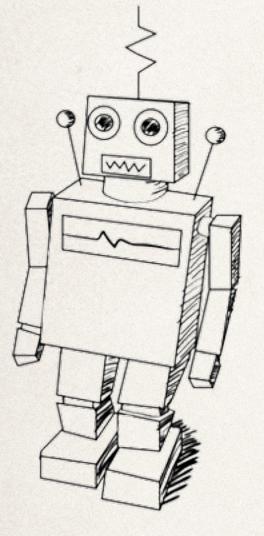
- Take a dynamical system and build an "interpretation map"
- An interpretation map is a function that maps states of the system to "beliefs" as probability measures
- Perform Bayesian inference / filtering on these probabilities and check if this process is consistent with dynamical system evolution



Virgo, N., Biehl, M., & McGregor, S. (2022). Interpreting Dynamical Systems as Bayesian Reasoners. In Machine Learning and Principles and Practice of Knowledge Discovery in Databases



Bayesian interpretation map: if a system can be interpreted as performing Bayesian inference with some arbitrary model, then it's an agent



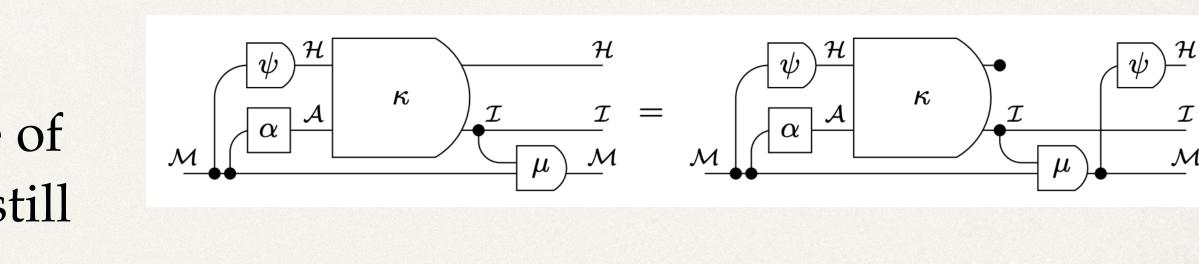
Bayesian interpretation map - pros and cons

Strengths

- Very general (category theory)
- Doesn't need to assume accurate knowledge of the environment (can fail causality test and still be an agent)

Limitations

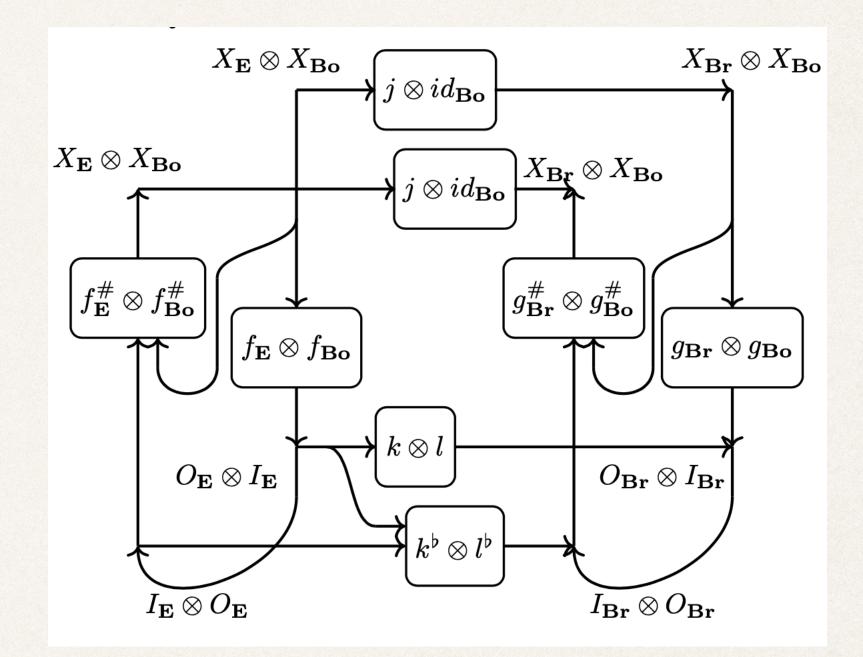
- Doesn't consider real environment
- Including systems other that agents?
 (Thermostats, controllers, etc.)



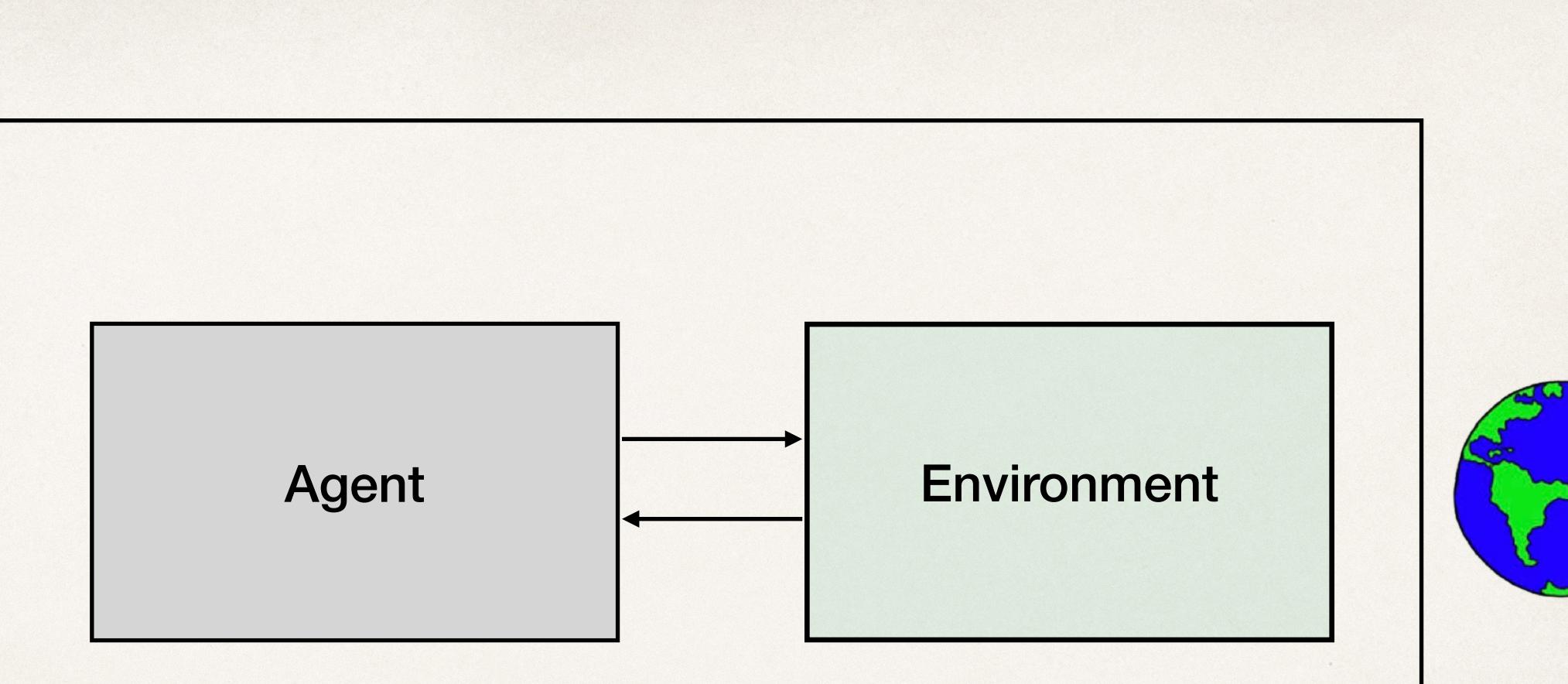
Biehl, M., & Virgo, N. (2022). Interpreting systems as solving POMDPs: a step towards a formal understanding of agency. *arXiv preprint arXiv*:2209.01619.

Categorical agent-environment interactions

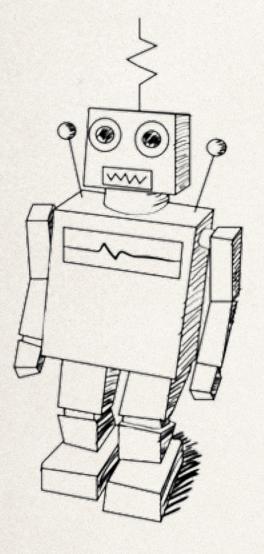
- Take Beer's account, study physical connections among brain-body-environment
- Formalise "adaptive fit" using internal model principle from control theory (cf. law of requisite variety/good regulator theorem in cybernetics)
- Study "higher order" functional relations between brain and environment (via the body)



Baltieri, M. In progress.



Categorical agent-environment interactions: if there is a map between brain and environment while brain and environment are both physically connected to the body, we have a proto-agent



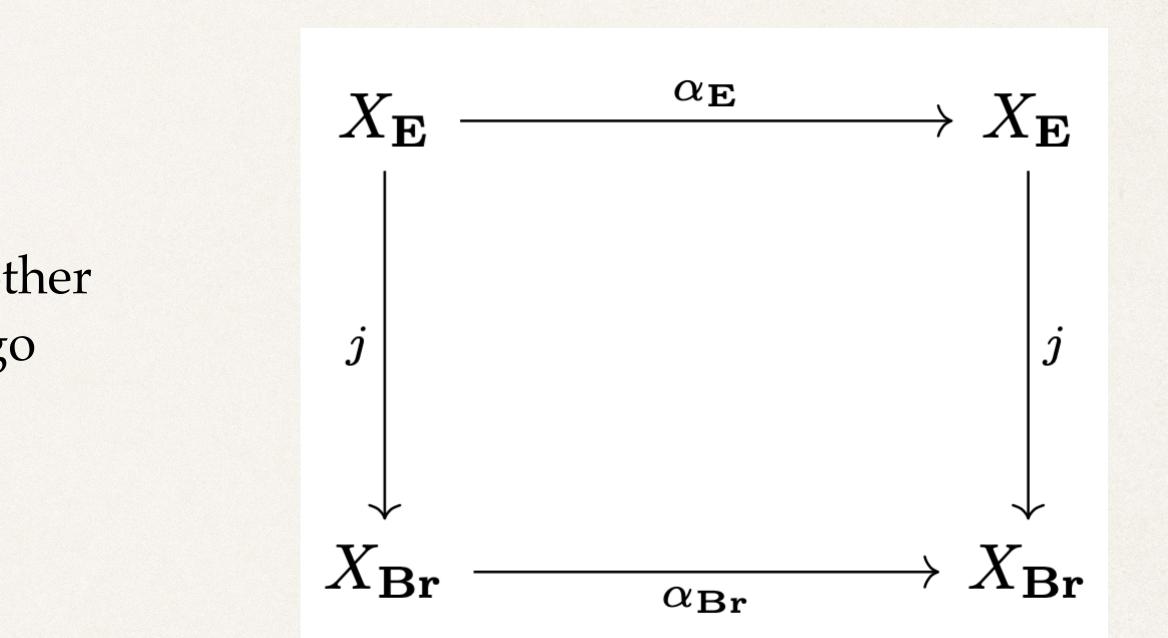
Categorical agent-environment interactions - pros and cons

Strengths

- Very general (category theory)
- It generalises FEP, Beer's proposal, probably other information-based ideas, partially Biehl + Virgo

Limitations

- Including systems other that agents?
- No account of causality
- Limited to "real" environments unlike Biehl + Virgo



Baltieri, M. In progress.

Relational methods

Advantages

- Most general domain of applications (physical * Too general to say something practically vs non-physical, sets vs. graphs vs.
 useful?
 probabilities, etc.)
- Agency as a relational property, we can in principle add other agents, observers, etc. and account for how they affect agency
- Few assumptions (due to their generality)

Disadvantages

- Not obvious how causal claims could be considered in this class of approaches
- Hard to know if we are capturing specifically a notion of agency or something else (maybe related to it)

Conclusion

- Prediction-based methods: agency in the eye of the beholder
- Causality-based methods: agency as a property intrinsic to a system
- Relational methods: agency with respect to something

(Can you define agency?)

What should your definition of agency include?

