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Abstract—The internal model principle, originally proposed in
the theory of control of linear systems, nowadays represents a
more general class of results in control theory and cybernetics.
The central claim of these results is that, under suitable assump-
tions, if a system (a controller) can regulate against a class of
external inputs (from the environment), it is because the system
contains a model of the system causing these inputs, which can
be used to generate signals counteracting them. Similar claims
on the role of internal models appear also in cognitive science,
especially in modern Bayesian treatments of cognitive agents,
often suggesting that a system (a human subject, or some other
agent) models its environment to adapt against disturbances and
perform goal-directed behaviour. It is however unclear whether
the Bayesian internal models discussed in cognitive science bear
any formal relation to the internal models invoked in standard
treatments of control theory. Here, we first review the internal
model principle and present a precise formulation of it using
concepts inspired by categorical systems theory. This leads to a
formal definition of “model” generalising its use in the internal
model principle. Although this notion of model is not a priori
related to the notion of Bayesian reasoning, we show that it can
be seen as a special case of possibilistic Bayesian filtering. This
result is based on a recent line of work formalising, using Markov
categories, a notion of interpretation, describing when a system
can be interpreted as performing Bayesian filtering on an outside
world in a consistent way.

Index Terms—Cybernetics, Control Theory, Internal Model
Principle, Interpretation Map, Bayesian Inference, Bayesian Fil-
tering.
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homeostasis and (perfect) adaptation in living organisms at all
scales, including microorganisms such as bacteria [6]—[8].

In artificial intelligence, internal models often appear un-
der the name of world models [9]-[11], and underlie a re-
search programme with applications to reinforcement learning,
robotics and deep learning, focusing on learning how to
represent hidden properties of the environment [12].

In cognitive science and neuroscience, internal models
are broadly thought to constitute the computational basis of
perception, motor control and high-level cognitive reason-
ing [13]-[16], although there is no shortage of debate about
this, e.g. [17]-[20]. In the context of neuroscience, internal
models are often, though by no means universally, presented
under a Bayesian framework. According to the Bayesian view,
brains or agents as whole systems, can be thought of as
Bayesian reasoners and their cognitive processes as instances
of Bayesian inference [21]-[24].

While the label “internal model,” or just “model” is used
across different disciplines, it is unclear whether it always
refers to the same underlying formal concept. If cognitive
scientists propose internal models for the study of cognition,
are they referring to the same kind of mathematical objects as
control theorists working with internal models for regulation
problems? We do not fully answer these questions here, but
take some steps towards answering them.

To do so, we structure this work in two main parts. In the
firct nart (Qectinn TN we nrecent the TMP develanad hv [M81—



contents

Different flavours of models

Internal models in control

Systems, and
Models
- Process theories from categories
Probabilities, possibilities, and
Bayes theorem and conjugate priors

- Take home message: Internal model
principle implies a Bayesian filtering
interpretation, the converse is not true

Demski et al. (2018)



The propblem

Representations? World models” Internal models”

- “Evidence for neural representations in area XYZ"
- “Perception updates internal representations of the external world”
. “Biological organisms use internal models to navigate dynamic environments”

. “Brains build predictive world models to anticipate future events”

| have no idea what any of these things mean, mathematically



The intuition

‘Brains model the environment’

Demski et al. (2018)



I__Ih c H@l’aﬁﬂ”@ Are my “models’

the same as your

Looking in different areas ‘models”?

| don’t know...

- Machine/reinforcement learning (“world
models”)

. Biology (“internal models”)

- Cognitive science/philosophy of mina
(“internal models”, “Bayesian models”)

- Neuroscience (“internal models”)




The literature

Different definitions

INT. J. SYSTEMS scI., 1970, voL. 1, xo. 2, 89-97

Every good regulator of a system must be a model
of that systemf
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The Internal Model Principle of Control
Theory*

B. A. FRANCISt and W. M. WONHAM1#

In multivariable servomechanisms designed to accommodate parameter uncer-
tainty, the controller must have special qualitative structural features which may
be derived for linear and weakly nonlinear systems.

Summary—The classical regulator probiem is posed in the
context of linear, time-invariant, finite-dimensional systems
with deterministic disturbance and reference signals. Control
action is generated by a compensator which is required to
provide closed loop stability and output regulation in the face
ofamallvariatiom.incminsystempanmetera.ltiuhown,

cmm® e AR o B 2. AR . a —_A_ . &

Second, it is to regulate a variable z which is
given function of the plant output ¢ and ti
reference signal r; typically z may be tl
tracking error r — c. A plant-compensator comt
nation with these two properties is termed



Background

Agents and environments

Actions




Unpacking that a little

Factorising the agent
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Meanwhnile the FEP

Friston blankets, boundary factored into sensors and actuators
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Meanwhile, in control theory

Control-plant-environment factorisation
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Internal model principle (IMP)

A model of homeostasis Implying a model?)

Controller models environment because it
“knows” how to counteract perturbations




‘When does a system model another system?”

1. What do we mean by “system™
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Systems (fully observaple)

Some definitions

Definition II.1. A system (or more precisely, a fully observ-
able system) X is comprised of a set X of states, a set I of
inputs (or observations), and an update (or dynamics) function:

updy 1 X x I — X, (1)

The pair ( )I() 1s collectively referred to as the interface of the
system, and we write X : Sys ( )1;.) to mean X has such an

interface.

Systems Inputs Outputs
Open Yes Yes
Autonomous No Yes

Closed No No

Definition I3 (Map of systems). Let X : Sys(s) and
X' : Sys( )I(/,) be systems. A map of systems f : X — X
1s comprised of two parts:

1) a map on states, given by a function

fo: X = X', (2)

2) a map on inputs, given by a function
fi: XxI—=T, (3)

such that the following diagram commutes:

(mx § fs,fi)

X x 1 s X! x I’
updxl lupdx, (4)
X I . X/

meaning that, for every x € X, € I, the following equation
1s satisfied:

fs(updx (z,7)) = updx (fs(), fi(z,1)), (5)



Our setup: rull systerm and components

Assumption 1 (Environment, plant, controller). The following
three components are so defined.:

1) the environment E : Sys ( é) IS an autonomous system
updg : £ — E, (8)

2) the plant P : Sys (E ;C) is a system

updp : P X E x C — P, 9)
3) the controller C : Sys (g) is a system
updc : C x P — C. (10)

The full system S : Sys ( Ex 113>< C) is the following composite
autonomous system:

upds : EX P xC —EXPxC
(8E73P78C) '_>(updE(8E)7ude(8P73E78C)7 (11)
updc(sc, sp)).

Let S = E x P x C denote the state space of the full system
S.

Factorisation of systems

Full system
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‘When does a system model another system?”

2. What do we mean by model™?
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What 1s this?




IVES

WO perspect

An example
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Modae.

Definition

Definition I1.9 (Model). A model of a system X € Sys ( )IC)
1S:

e asystem M € Sys( A{_,) (the archetype), and
e a map of systems (the model per se)

X 2 s M (15)

such that

1) its part on states us : X — M 1s surjective, and
2) its part on inputs u;i(x,—) : I — J is surjective for

each x € X.
Generalising ideas such as: - State aggregation - Macrostates
- Coarse grainings - Model reduction/compression (PCA, _ e-machines
; Lumpgb”r[y S\/D, t-SNE, UMAP, etC.>

- Variable aggregation - Dynamical consistency



‘When does a system model another system?”

3. "When' does this happen?



Controllers modelling systems

Sullicient conditions for models of the tull system and of the environment

.« Controllers solve proble—- -
Assumption 2 (Regulation cond: _ Full system\
problem, meaning there exists ai Agent R S~
nition 11.6) S* — S such that, or 'co“tm“em I [ ij\ |
- Controllers are autono! ) s
when solving problems %

Model map
(the same)

Model map
Assumption 3 (Error feedback

autonomous dynamics updc. :
system C* : Sys(cl*), that we c
making mwc+ a full-fledged map o

{odel Principle (attracting environ-
fem subject to Assumptions 1 to 4.
ting environment E* via the dashed

TTC* : S* —
v . C*

- Kind of mysterious... -

Loy - S* Assumption 3

(13)

Assumption 4. There is an isomorphism of systems S* = E*,
meaning that for each environment state sg € E™, there is
exactly one s € S* such that 7g(s) = sg.



‘When does a system model another system?”

4 \What does Bayes have to do with this?



Categories

String diagrams

Definition IIL.1 (Category). A category C consists of:

a class of objects, ob(C), e.g. A,B,C, ...,

a class of maps, arrows or morphisms, arrow(C) (these
three terms are interchangeable),

for each arrow in arrow(C), a source and a target, which
are objects, i.e. elements of ob(C), if an arrow f has
source A and target B then we often write itas f : A —
B, and we say that A — B is the arrow’s type,

for each object of ob(C), an identity morphismids : A —
A,

a binary operation § on arrows called the composition
rule, such that given morphisms f : A —+ Bandg: B —
C, their composite f§g is an arrow with type A — C;
composition is defined when (and only when) the target
of one arrow equals the source of another, and must obey
the following laws:

— associativity: given morphisms f : A — B, g :
B — C and h: C — D, we must have f$(gsh) =
(f39)5h,

— left and right unit laws: for every pair of objects
A, B and morphism f : A — B, we must have

idasf=f=/f3idp.

Objects
Morphisms
l[dentity

Composition

id 4




Process theories

Putting things in parallel in string diagrams

A B
— f I
. Parallel composition e " 2ol Tanp==2
. . r
. |dentity object =
A B
¢ SWAPD MAP BDCA

. Interchange law o—5

o ]
> ~
»
o]
I
Q
S
P~
= [

- Naturality of swap

dovgh  Oven

Knead

bread oven

Boisseau et al. (2022)



Markov categories

Process theorles for non-deterministic processes

. Copy { . Deterministic morphism

. Delete — such that

B A
subject to the following i { ) A<
B A

|

{ _ Q | { _ {>< - Non-deterministic morphisms

/ - - \ . Normalised probabilities
associativity

I commutativity

identity




Markov categories

. Probability distribution I
. Conditional probability — 9 >—
. Chapman-Kolmogorov — 9 >——
~ W

. Joint probability _h/) Z
_\ W

- Marginalisation

- Chainrule

By example, with probabilities

J(x) or P(x)

gy [ x)or P(y | x)

Z 8@ | y)gly | x) =g"(z | x)

yeyY

h(w, 2)

D h(w,2) = h'(w)

7€/

h(w,z) = h"(z | w) h'(w)



Bayesian inference

[N string diagrams

The mapﬁ IS a Bayesian inversion (think, a With (hyper)pqrameters,ﬁ IS a Bayesian
posterior) of fif inversion of fif
f1x) pe) =f(x[y) ) f(y]x) plx) f12) wx:0) = (x| y:0) ) fy|x) yix: 0)
xeX xeX
— Fx]y) = J(y1x) p(x) — Fix]y:0) = J(y | x) w(x; 6)

Y ey JO1X) p(x) 2 ey SO wix; 6)



Conjugate priors in categories

[N string diagrams

What are conjugate priors? “Prior and posterior are of the same family”

- take parametrised Bayes

—\/Y
o X F— e X A

_ —1 Y _
aunea G x

© X Y @ﬁ 7 Y

T}E_{ X T ﬁ—< o ij
- impose the following

Y Y

\W N\ Or5yX

97 97



Models that change over time

Bayesian filtering and conjugate priors for filtering

The map k' is a Bayesian filtering inversion Conjugate priors for Bayesian filtering

of Kif
—> There exists a map ¢ such that

p ) X K =

B }X Y
© X

v o Ay

T < ), |« — .
= A B VI

> ey KOs x | X)) p(x)
zx’,x”EX K(y9 x” ‘ x,) p(x,)

K'(x]y) =



payeslan interpretations

Special case

Turn definition of conjugate priors for Bayesian
filtering (and inference as a special case)
around:

- assume a map ¢ (controller, brain, maybe
agent, etc.)

and find

- interpretation (or belief) map y, ana

Bayesian model k (environment, whole world,
Y

etc.) 0 X
v > & =
such that... :)E

2 DA




Theorem IV4. Let M model X with . X — M, and assume

‘ne theorem
M and X are autonomous. Define c: X M — M as

Main result X .

Y c M = T updy P
(51)
Informally: for every “model”, and k. : X = X @ X as:
we have a Bayesian filtering interpretation X ] \> i ) X[ P
(actually, more than one, but at least this one). _ updy )——

Then K is the hzdden Markov model, and u;' : M > X the
a1, esian filtering interpretation of c,

(Model of the)
_ Environment
—_— —

Definition I1.9 (Model). A model of &

Controller el
— > .
time upo(a‘te A - time upo(o«te A
vl :
Model map Model map - : Belief map Belief map
(the same) TR — (the same)
time upo(ate fe y g‘ time upo(ate
I I . 1
> AN —
Environment N o o Controller
=
| o4 g w ) : _

Proof. See Appendix B.




ax

Bayesian filtering for controllers

Controllers model environments in a Bayesian sense

Example IV.5. Define c: E* @ C* — C* as

E* E*
cc  —e C*
O C — C* updc-
(54) (Model of the)
Envi i
and Kk : E* « E* Q E* as: ﬂﬁ
E* p ) o (55) £ dot
L E* ' E* Wj * wme upaate
E*
Then k is the hidden Markov model, and v ' : C* > E* the Belief map Belief map
interpretation map of a Bayesian filtering interpretation of c, (the same)
l.e. we have: time update
R \ E
o e ) & - —_—
e Controller
cTTTTTTT . E* (56)




A special interpretation

Control theoretic models are “trivial” from a Bayesian perspective

This interpretation is however:

. possibilistic (not probabilistic)

- the Bayesian model k is an

approximation (it groups and updates
indistinguishable states of the env.)

. “trivial” since observations are ignorea

« one where controller updates are
deterministic

—————————

—————————




Possipilistic uncertainty

Beliefs without propapilities

- Non-deterministic automata (computer
science)

- constructor theory (physics)

- viability theory (dynamical systems)




WO perspectives

An example

- Controller: the army outside the castle - -

‘).

[ T oty ey ol
| i‘v———v—u—!—n—v— M

- Environment: the army inside the castle

. Task for the controller: survive arrows
from army inside castle




Controller

- 2 =
time upo(a\te
Model map Model map
(the same)
time upa!a\te
ﬁ

Environment
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What should we have here

Q

Model moap
(the same)

)
= 0
C =
= 0O
O O
me
H,Omb +
OB .
O + O m_m
._LeQ
v O —
= S
Sn/
O O
C. 4
<< o

Model map

P

Move place/window

Controller
time upo(o«te

ime u(ao(ate

t

Environment

N

[

MQP

Model




Controller

G
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Model map
(the same)

time upo(o«te

ime u(ao(ate

t

N

[

Model map

Environment

Not o mo

Model map

Model map

P

Move place/window




(Model of the)

Environment

_

time upo(a\te

Belief map Belief map
(the same)

time upa(a\te
—>

Controller




Chodl o 2 —_ 3 Q:What should we have here?
ironment >
0 A

time upo(ate

el wop Bl o A: Position of archers with same target

(the same)

S (Us), consistent with previous beliefs

Beliet map Beliet map

Time t -_— Time t+1
Move place



—> . .
Our beliefs missed an archer

Not an interpretation

Beliel map Beliel map

Time t -_— Time t+1
Move place



Model map/beliel map

They decide how narrow the slit is (modulo probabilities




Mplications
And applications

IMP describes consistency between systems
- brain-environment

- agent-environment

- controller-environment

A pre-requisite for any good notion of model?

This appears in:

theoretical biology (Rosen)

Finally, we must now introduce some dynamical considerations, to capture the
1dea that M 1s a predictive model. To do this, we must recall some properties of
temporal encodings of dynamics, as they were described in Sect. 4.5 above. Let us
suppose that T; : S; — S; 1s an abstract dynamics on S;. If M 1s to be a dynamical
model of this abstract dynamics, then there must exist a dynamics Typ) : M — M
such that the diagram

invariance equivariance

(6.3)
con Instant
t; 1t 1cs will
not cessary

between them.



Results

[n summary

1.Definition

and -

of “‘model” generalising coarse grainings

he i

defir

<es, compatible with physics/control theory

itions

2.Proved that every “model” implies a Bayesian filtering
interpretation (the reverse is not true because...)

3.This interpretation is very special

™
Martin Bieh

| | 1"‘ ’;
_ :
s .. ! -
Bk

(\STTTH
Matteo Capucci Nathaniel Virgo

Definition IL.9 (Model). A model of a system X € Sys(x)
is:

o asystem M € Sys(;) (the archetype), and

o a map of systems (the model per se)

X —2 5 M (15)

such that
1) its part on states us : X — M is surjective, and
2) its part on inputs ui(z,—) : I — J is surjective for
each z € X.

Theorem IV.4. Let M model X with u : X — M, and assume
M and X are autonomous. Define c: X M — M as

X X
M — o M
Y c = M updy, f———

(51)
and k : X o X ® X as:

X X
X
—_)Z - xfmx @

Then kK is the hidden Markov model, and p L. M e X the
interpretation map of a Bayesian filtering interpretation of c,
i.e. we have:

_________

_________

b o e o o o o =

where the dashed lines show, informally, where we replaced
the definitions above in Eq. (45).

Proof. See Appendix B. [



