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Roadmap

• Bayesian readings of optimal control 

• Bayesian readings of classical control (work in progress) 

Case 1: PID tuning 

Case 2: PID with multiple degrees of freedom 

Case 3: A general Bayesian framework



Bayesian inference and control

Duality of inference and control, a brief historical account: 

• Kalman (Kalman filter - LQR, observability - controllability), 60’s 

• Johnson (Integral control - polynomial bias estimation), 60-70’s 

• Fleming and Mitter (Nonlinear filtering into linear control via logarithmic transformation of HJB 
equation), 70-80’s 

• Whittle et al. (Risk sensitive control), 80’s 

• Mitter and Newton (Variational interpretation of optimal control), 00’s 

• Kappen, Todorov (Applications of logarithmic transformation to control problems, new 
dualities), 00-10’s 

• (many more)



Examples in neuroscience and robotics



What can classical control gain from a 
Bayesian perspective?



Case 1 - Tuning rules

• In Baltieri & Buckley (2019), we re-derived PID control 
equations as a problem of approximate variational 
inference (cf. Johnson and his derivation of integral 
control as bias estimation in observer models) 

• PID gains as precisions (i.e., inverse variances) on 
observations and their higher embedding orders 

• A new algorithm to optimise PID gains based on 
second order optimisation of a variational free energy 
(i.e., first order minimisation of a variational action, 
see Friston (2008))

(Image courtesy of Wikimedia Commons)
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Case 2 - Theoretical background

• A classical problem in controller design: two degrees of 
freedom to differentiate set-point changes from load 
disturbances 

• The standard solution: each degree of freedom requires 
an independently adjusted closed-loop transfer function 

• Usually this is limited to two degrees of freedom (2DOF) 
with a design including a feedforward and feedback 
component 

• Our reading: feedforward and feedback components 
correspond to prior (before observations) and likelihood 
(after observations) in a variational scheme. More next.
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Case 3 - Performance-robustness trade-off

Following Åström & Hägglund (2000). 

Performance criteria: 

• Load disturbance response 

• Set-point response 

• Measurement noise response 

Robustness criteria 

• Robustness to model uncertainty



A proposal: state-space formulation

μ̃′ x = f (μ̃x, μ̃v) + w̃
ỹ = g(μ̃x, μ̃v) + z̃

w̃ ∼ N(0, πw̃)
z̃ ∼ N(0, πz̃)

πw̃ = k(ηw̃) + r̃w

πz̃ = h(ηz̃) + r̃z

r̃w ∼ N(0, pw̃)
r̃z ∼ N(0, pz̃)

Dynamics 
Observations

System fluctuations 
Observation noise

System precision law 
Observation precision law

(Stochastic volatility + time-scale separation assumptions)

Uncertainty on system precision 
Uncertainty on observation precision

State space model



A variational formulation of classical 
controllers - Recipe
• Describe a standard problem of inference given some 

goals, i.e., find posterior beliefs given a likelihood 
function and some prior encoding reference target 

• Write down variational bound (variational free energy 
or ELBO) to approximate the posterior 

• Minimise variational free energy to approximate 
posterior (standard variational Bayes) 

• At the same time, update observations by acting/
controlling them, i.e., change surprisal while 
minimising bound

p(x |y) =
p(y |x)p(x)

p(y)

Variational free energy

DKL(q(x) | | p(x |y)) −ln p(y)



A schematic recipe

Generahve model 
- 

A probabilishc rewrihng of 
the previous SSM

Recognihon dynamics 
- 

Controller

Variahonal free energy for 
approximate Bayesian 

inference 
(with variahonal Gaussian 
and Laplace assumphons)

Gradient descent on free energy 
given a generahve model

Generahve process 
- 

Plant
y(t)

·u(t)



The variational free energy

• The first two terms describe a standard 2DOF PID controller when                          , see Baltieri & Buckley, 
2019 

• The third term provides a prior on stochastic volatility of measurement noise, e.g., when a sensor 
breaks, this can be used to update over time the best estimate of current measurement noise, (cf. 
empirical and hierarchical Bayes) 

• The fourth term provides a prior for stochastic volatility of system noise, e.g., model uncertainty can 
change over time (decreasing when new info. becomes available) and dedicated priors may encode 
info. for a class of systems, (cf. empirical and hierarchical Bayes)
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f (μ̃x, μ̃v) = r(t)



Minimisation scheme

• Minimise variational bound balancing 2DOF (first two weighted 
prediction errors) 

• Build PID controller to output u combining 2DOF 

• Optimise stochastic volatility of measurement noise 

• Optimise stochastic volatility of system noise (model 
uncertainty)
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Minimise variational free energy



Intuitive use of hierarchical and empirical 
Bayes
Hierarchical Bayes: turn all parameters and hyperparameters into random variables, use their known 
uncertainty to our advantage 

For example, if there is prior knowledge that a system to be controlled has a certain fault tolerance, 
embed this information in the controller’s model to allow moving to a new operating regime (e.g., a 
wheeled robot losing the ability to utilise one wheel) 

Empirical Bayes: use data/observations to estimate priors 

For example, given a class of systems to control (e.g., all machines with a certain engine), determine 
the most likely **class** priors to be used as initial conditions for control, states and/or parameters



Summary

• A probabilistic framework to describe classical controllers as variational inference 

• More theoretical background (2DOF controllers), tuning rules (gradient descent on integral of 
variational free energy, or local second order scheme) 

• Generalisations to different problems: the performance-robustness trade-off of PID control as a 
hierarchical Bayesian scheme 

• Implementations hopefully soon 

• (Collaborations?)
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