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Roadmap

« Bayesian readings of optimal control

« Bayesian readings of classical control (work in progress)
Case 1: PID tuning
Case 2: PID with multiple degrees of freedom

Case 3: A general Bayesian framework
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Bayesian inference and control

Duality of inference and control, a brief historical account:
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Kalman (Kalman filter - LQR, observability - controllability), 60’s
Johnson (Integral control - polynomial bias estimation), 60-70’s

Fleming and Mitter (Nonlinear filtering into linear control via logarithmic transformation of HJB
equation), 70-80’s

Whittle et al. (Risk sensitive control), 80’s
Mitter and Newton (Variational interpretation of optimal control), 00’s

Kappen, Todorov (Applications of logarithmic transformation to control problems, new
dualities), 00-10’s

(many more)
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Examples in neuroscience and robotics
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Optimal choice of actions is a fundamental problem relevant to
fields as diverse as neuroscience, psychology, economics, computer
science, and control engineering. Despite this broad relevance the
abstract setting is similar: we have an agent choosing actions over
time, an uncertain dynamical system whose state is affected by
those actions, and a performance criterion that the agent seeks
to optimize. Solving problems of this kind remains hard, in part,
because of overly generic formulations. Here, we propose a more
structured formulation that greatly simplifies the construction of
optimal control laws in both discrete and continuous domains.
An exhaustive search over actions is avoided and the problem
becomes linear. This yields algorithms that outperform Dynamic
Programming and Reinforcement Learning, and thereby solve tra-
ditional problems more efficiently. Our framework also enables
computations that were not possible before: composing optimal
control laws by mixing primitives, applying deterministic methods
to stochastic systems, quantifying the benefits of error tolerance,
and inferring goals from behavioral data via convex optimization.
Development of a general class of easily solvable problems tends
to accelerate progress—as linear systems theory has done, for
example. Our framework may have similar impact in fields where
optimal choice of actions is relevant.

action selection | cost function | linear Bellman equation | stochastic optimal
control
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Reinforcement Learning (2) methods that are very general but
can be inefficient. Indeed, Eq. 1 characterizes v(x) only implicitly,
as the solution to an unsolved optimization problem, impeding
both analytical and numerical approaches.

Here, we show how the Bellman equation can be greatly sim-
plified. We find an analytical solution for the optimal u given v,
and then transform Eq. 1 into a linear equation. Short of solv-
ing the entire problem analytically, reducing optimal control to a
linear equation is the best one can hope for. This simplification
comes at a modest price: although we impose certain structure
on the problem formulation, most control problems of practical
interest can still be handled. In discrete domains our work has
no precursors. In continuous domains there exists related prior
work (6-8) that we build on here. Additional results can be found
in our recent conference articles (9—11), online preprints (12-14),
and supplementary notes [supporting information (SI) Appendix].

Results

Reducing Optimal Control to a Linear Problem. We aim to con-
struct a general class of MDPs where the exhaustive search over
actions is replaced with an analytical solution. Discrete optimiza-
tion problems rarely have analytical solutions, thus our agenda
calls for continuous actions. This may seem counterintuitive if
one thinks of actions as symbols (“go left,” “go right”). However,
what gives meaning to such symbols are the underlying transition
probabilities—which are continuous. The latter observation is key
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Abstract

With the goal to generate more scalable algorithms with higher efficiency and fewer open parame-
ters, reinforcement learning (RL) has recently moved towards combining classical techniques from
optimal control and dynamic programming with modern learning techniques from statistical esti-
mation theory. In this vein, this paper suggests to use the framework of stochastic optimal control
with path integrals to derive a novel approach to RL with parameterized policies. While solidly
grounded in value function estimation and optimal control based on the stochastic Hamilton-Jacobi-
Bellman (HJIB) equations, policy improvements can be transformed into an approximation problem
of a path integral which has no open algorithmic parameters other than the exploration noise. The
resulting algorithm can be conceived of as model-based, semi-model-based, or even model free,
depending on how the learning problem is structured. The update equations have no danger of
numerical instabilities as neither matrix inversions nor gradient learning rates are required. Our
new algorithm demonstrates interesting similarities with previous RL research in the framework
of probability matching and provides intuition why the slightly heuristically motivated probability
matching approach can actually perform well. Empirical evaluations demonstrate significant per-
formance improvements over gradient-based policy learning and scalability to high-dimensional
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What can classical control gain from a
Bayesian perspective?
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Case 1 - Tuning rules

 In Baltieri & Buckley (2019), we re-derived PID control
equations as a problem of approximate variational

Plant /

y(t) >

Process

inference (cf. Johnson and his derivation of integral ﬂ:@ﬂ

control as bias estimation in observer models) -

« PID gains as precisions (i.e., inverse variances) on
observations and their higher embedding orders

« A new algorithm to optimise PID gains based on (Image courtesy of Wikimedia Commons)
second order optimisation of a variational free energy t
(i.e., first order minimisation of a variational action, _ de(1)
see Friston (2008)) u(t) = kye(t) + k; . e(r)dr + kg ¢
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Case 2 - Theoretical background

« A classical problem in controller design: two degrees of
freedom to differentiate set-point changes from load
disturbances Feedforward |

controller
o The standard solution: each degree of freedom requires
an independently adjusted closed-loop transfer function R

y(t)

v

rft) | + Feedback
o Usually this is limited to two degrees of freedom (2DOF) O controller [ O] Pl
with a design including a feedforward and feedback _I
component

. 2DOF PID trol
o Our reading: feedforward and feedback components Ccontro

correspond to prior (before observations) and likelihood
(after observations) in a variational scheme. More next.
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Case 3 - Performance-robustness trade-off

Following Astrom & Hagglund (2000).

Performance criteria:

« Load disturbance response

» Set-point response

« Measurement noise response
Robustness criteria

« Robustness to model uncertainty
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A proposal: state-space formulation

State space model

Dynamics f = f(f,, fi,) +w System fluctuations w ~ N(O, ;)
Observations y=g,fH,)+2Z Observation noise 7~ NQ, )

(Stochastic volatility + time-scale separation assumptions)

System precision law ry, =k(g) + 7, Uncertainty on system precision r, ~ NQ,p;)
Observation precision law ms = h(n:) + 7, Uncertainty on observation precision 7 ~ N(0, p;)
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A variational formulation of classical
controllers - Recipe

« Describe a standard problem of inference given some p(y|x)p(x)
goals, i.e., find posterior beliefs given a likelihood pixly) = ()
function and some prior encoding reference target

Variational free energy

o Write down variational bound (variational free energy
or ELBO) to approximate the posterior

« Minimise variational free energy to approximate
posterior (standard variational Bayes)

« At the same time, update observations by acting/
controlling them, i.e., change surprisal while
minimising bound
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A schematic recipe
- ™ @

Generative model

~

ariational free energy for

approximate Bayesian
inference

(with variational Gaussian

and Laplace assumptions)

A probabilistic rewriting of
the previous SSM

- ,

Gradient descent on free energy
given a generative model

Recognition dynamics > Generative process

Plant

Controller
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The variational free energy

1 2

2
Fz—[%@—gmgmﬁ + b (= F0 1))

. -+%(-w%02+%@mwm»1

load disturbances set-point changes  meas. noise response  model uncertainty

« The first two terms describe a standard 2DOF PID controller when f(ji, fi,) = r(?), see Baltieri & Buckley,
2019

« The third term provides a prior on stochastic volatility of measurement noise, e.g., when a sensor
breaks, this can be used to update over time the best estimate of current measurement noise, (cf.
empirical and hierarchical Bayes)

« The fourth term provides a prior for stochastic volatility of system noise, e.g., model uncertainty can
change over time (decreasing when new info. becomes available) and dedicated priors may encode
info. for a class of systems, (cf. empirical and hierarchical Bayes)
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Minimisation scheme

) R i R R e e

load disturbances set-point changes  meas. noise response  model uncertainty

Minimise variational free energy

ﬁx -V F e Minimise variational bound balancing 2DOF (first two weighted
' OF Oy prediction errors)
w(t) =V, F = 9y o « Build PID controller to output u combining 2DOF
fip. = vV, F « Optimise stochastic volatility of measurement noise
=V, F « Optimise stochastic volatility of system noise (model

uncertainty)
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Intuitive use of hierarchical and empirical
Bayes

Hierarchical Bayes: turn all parameters and hyperparameters into random variables, use their known
uncertainty to our advantage

For example, if there is prior knowledge that a system to be controlled has a certain fault tolerance,
embed this information in the controller’s model to allow moving to a new operating regime (e.g., a

wheeled robot losing the ability to utilise one wheel)

Empirical Bayes: use data/observations to estimate priors

For example, given a class of systems to control (e.g., all machines with a certain engine), determine
the most likely **class** priors to be used as initial conditions for control, states and/or parameters
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Summary

A probabilistic framework to describe classical controllers as variational inference

More theoretical background (2DOF controllers), tuning rules (gradient descent on integral of
variational free energy, or local second order scheme)

Generalisations to different problems: the performance-robustness trade-off of PID control as a
hierarchical Bayesian scheme

Implementations hopefully soon

(Collaborations?)
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