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- Agents and (simple) beliefs
« A detour to Fristonlanad
- Simple beliefs via compression of MDPs (7)

- (Tentative) Compressed MDPs for minimal cognition



What I am interested in

Background

Actions
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What agents ‘know" apout their environment

Or rather, what we should believe agents "‘know’

- What beliefs can we attribute to an agent solving a task?
- What are some interesting (minimal?) classes of such beliefs?
- What goals can we attribute to an agent?

- What is the relation between goals and beliefs we attribute to a system?



Unpacking that a little

Factorising the agent
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Ahee Manuel in Fristonland

Friston blankets, boundary factored into sensors and actuators
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Brain states
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Active inference
What agents DO

- Perception, decision making, planning and
earning based on approximate Bayes

- Assumes POMPDs/state-space models
oroblem structure (~ RL setup)

- Provides an alternative cost function
(expected free energy)

. ..ideally one that is derived from the FEP, but
it can stand without it
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The free energy principle

What agents ARE
. A foundational theory of agents, (living) | Agent i o |
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«Neural representations, this work has suggested, are not action neutral
mirrors of the world. Instead they are in some deep sense ‘action-
oriented (Clark 1997 Engel et al. 2013). They are geared to promoting
successiul, fast, fluent actions and engagements for a creature with
specliic needs and pbodily form. Such representations will be as minimal
as possible, neither encoding nor processing information in costly ways
when simpler routines, combpined with world-exploiting actions, can do
the job»

(Clark, 2015)
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" generative models?

Gathering knowledge vs. achieving a godi

Simplified generative models, encoding sensorimotor information/Umwelt

Example: Outfielder problem (Fink et al., 2009)
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1) Trajectoryprediction (TP)

—

2) Optical Acceleration Cancellation (OAC)



Action-oriented generative models

Example task: agent performing phototaxis

R

Perception-
oriented

Action-oriented

e.g. Braitenberg
vehicles




The linebot

McGregor et al. (2015) look at FEP to
understand what it can say about an
agent’s beliefs.

This agent is trying to reach a goal
position when the only information
available is high/low concentration of o

certain Chemlcc”- Figure 1: Illustration of agent-environment system. The agent has a sensor
which reads High or Low and is sensitive to chemical concentration. The agent’s
motor can attempt to move the agent clockwise or anticlockwise.



The linebot
~with simplitied beliefs

Left Right

My master dissertation: what if the agent
oeliefs were “simplified” (hierarchical
model with two levels: half circle + left/
right)




Braitenpberg venicles

Photo/chemo/rheo/tropo/ ... taxis

- Vehicles “2”

- Agent with two sensors and two wheels

- Sensors and wheels connected by wires
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https://www.youtube.com/watch?v=W_X07gZuqog

5-10 years later..



Markov decision Processes

Cheap ways towards goals

A Markov decision process is a tuple (S, A, T, v, r), \ A
where: o ( P(S) xR

. S is the state space,
. A is the action space,

« T:8%XA — P(S) is the transitions dynamics,

often written as P(s,.; | s, a,),

. ¥ € [0,1) is called the discount factor,

. r: S XA — Risthereward function, giving o
reward every time a transition is taken.



Propabilistic pisimulation equivalence

Givan et al. (2003), but only one of the many definitions

Let (S, A, T, y,R) be a Markov Decision Process,
s;» 8; € 5 states of the state space S and a € A an

action of the action space A.

A probabilistic bisimulation equivalence is an
equivalence relation B C § X S such that:

(s,5) €B (or 5;Bs;) = P(E|s;,a) = P(E\Sj, a) and
R(s;,a) = R(S]-, a)

for all equivalence classes E € S/B, i.e. where
P(E|s,a) = 2 P(s’|s, a), and for all actions a € A.
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Same idea, simplitied

For closed dynamical systems, no M.




A worked out example
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Bisimulations without rewarads

Task-independent compression

- Codrse-graining state space
- Coarse-graining state-action space
. {, h:surjective

. cf




Bisimulations with rewarads

Task-relevant vs task-irrelevant information?

- Codrse-graining state space
- Coarse-graining state-action space
. {, h:surjective

. cf




What about policies?




On-policy bisimulations

Policy-dependent compression

- Given a policy,

the dynamics induced by each action. We first define:

R = Z m(als)R(s,a)
VC' € Sg=, P (C) = ZW((I]S) Z P(s,a)(s")

s'eC

Definition 3. Given an MDP M, an equivalence relation
E™ C § x § is a w-bisimulation relation if whenever
(s,t) € ET the following properties hold:

I. R =R}

. cf




Braitenpberg venicles

And their beliels (tentative)

« Taxis in terms of an MDP

- Question: can Braitenberg veni

MDP?

« Structure:

- Reward: chemical/light/...
concentration

cles be

interpreted as a bisimulation of an

 [ransitions: navigation in space
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https://www.youtube.com/watch?v=W_X07gZuqog

Simplitied vehicles
Version 1
0 Oiﬂy gets one bit of sensory

information per sensor (light/no light,
chemical/no chemical)

- Only emits one bit of motor information
oer motor (full speed/no move)

- Cannot distinguish angle or distance to
SOuUrce




Simplitied vehicles

Version /

« Only emits one bit of motor information
oer motor (full speed/no move)

- Cannot distinguish distance to source




Simplitied vehicles
Version 3
0 Oiﬂy gets one bit of sensory

information per sensor (light/no light,
chemical/no chemical)

- Cannot distinguish angle to source




Standard venicles

Properties

. GGiven same distance to source

. ...0nd same angle between front-facing
direction and direction to source

. ..thereis an invariance to rotations
around sources

- WIP - bisimulation equivalence with
. Distance to source ~ reward

. State-space coarse-graining (states:
oairs of distance and angle)

« Actions are the same




D1SCUSSION POINTS

What about partially observable systems? - We have some defs

Why the simplest beliefs? - Doesn’t work for agents that “can do more”
What about continuous-time systems? - We have some defs

Just old ideas (lumpability, state  Sure, bisimulations are also old! Milner was
aggregation, dynamical consistency, working on similar things in the “/0s, new
epsilon machines, etc.)? applications for old ideas?

Relations to what Nathaniel presented? - Probably, still unclear



Summary

Started from agents “0 la Braitenberg”: simple

internal structure but complex behaviour

. Interested in understanding what beliefs/goals
can be attributed to these agents

. Systematical

MDPs, going t

Y
g

-ormulated problems as MDPs to get a cheap
notion of goals (reward/value)

ooked at compressions of

‘ough some examples

Conjectured ways to look at Braitenberg

vehicles’ beliefs

Or build belief MDP and apply previous ideas






Implementations in ML

« Task relevant vs. task irrelevant information
- Approximations with various pseudo-metrics

- Theorems to show that these pseudo-metrics are well-behaved



