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The definition of life remains one of science’s most profound challenges, with contemporary ap-
proaches usually focusing on two research programmes: Darwinian evolution and self-maintenance
in chemical systems. While evolution has been successfully abstracted and mathematically mod-
elled, the concept of a self-sustaining system has so far resisted a comparable level of formalisation.
This paper tackles this challenge by reframing the concept of self-sustaining system within a more
abstract framework to study agents: goal-directed systems acting in an environment. We build
on an existing conceptual framework comprising three requirements for agents: individuality,
normativity (or goal-directedness), and interactional asymmetry. We then provide a systematic
analysis, under a unified notation, of several mathematical approaches aiming to formalise these
requirements, including the free energy principle, integrated information theory and dynamical
systems. Unlike this conceptual framework, which commits to an intrinsic perspective on agency,
we focus on a less ontologically committed as-if stance. Using this, we discuss links between
identity and normativity, and a way to understand actions as if they were produced by causal
interventions. Taken together, our systematic analysis clarifies the limitations of current proposals
and reveals how they can work synergistically within a unified, mathematical account of agency
across natural and artificial domains.
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1. Introduction

Artificial Life (ALife) formulates an approach to the study of living systems based on the study
of “life as it could be” [1]. ALife can be seen as a form of “comparative biology”, that extends
research in biology and origins of life to artificial universes, allowing us to study the properties of
life, individuality and evolution from a more general, substrate-independent perspective [2]. This
line of research is tightly connected to inquiries about Terran life, i.e. life as it is here on Earth, and its
origins. To this point, the working definition of life provided by NASA, “a self-sustaining chemical
system capable of undergoing Darwinian evolution” [3], elegantly captures the two central pillars
that drive modern inquiries into the origins of living systems. The second part of this definition,
“[Clapable of undergoing Darwinian evolution”, has been the subject of extensive and successful
formal abstraction, particularly in evolutionary biology [4], computer science [5] and artificial life [6].
Computational systems such as Avida [7, 8] and Tierra [9] have demonstrated that core principles
of evolution including selection, replication, and mutation can be instantiated in silico, yielding
complex emergent phenomena that mirror biological evolution without recapitulating the intricacies
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of terrestrial biochemistry. The implementation and study of modern, complex artificial worlds like
Lenia [10, 11] further show the power of this approach, revealing a universe of digital creatures with
their own evolving dynamics (see also [12] for a historical review of this and other related approaches
in studies of cellular automata).

On the other hand, the first part, “a self-sustaining chemical system [...]”, has received compar-
atively less attention from a formal, mathematical and computational perspective. While we have
powerful models describing the dynamics and structure of evolution over time given an entity of
interest, i.e. some kind of self-sustaining (chemical) system, we mostly lack a corresponding formal
perspective to characterise the spectrum of possible entities of interest. The main goal of this paper is
to provide a unifying presentation of different proposals for the study of such entities by focusing
on the concept of agents, which we informally describe, for now, as goal-directed systems acting in an
environment.

This is in contrast to other ways to describe, or explain away the existence of agents. In much of
physics for instance, the world is explained by dynamical laws that contain no explicit variables that
can be attributed to agents or actions. On the other hand, thermodynamic and complex-systems views
link agency to irreversibility and information use [13], but risk conflating generic non-equilibrium sys-
tems (like a steam engine [14]) with living ones. By contrast, fields like computer science pragmatically
assumes the existence of agents: software agents act in digital environments [15], agent-based models
explore macro-patterns from micro-rules [16], while Al extends the notion to learning systems, includ-
ing contemporary “agentic” models and reinforcement learning’s agent-environment loop [17, 18].
Control theory likewise presupposes goals and actions, formalising controller-plant-environment
loops that steer systems toward targets and thereby bridge physics and Al using pragmatic notions
of goal-directedness [19]. Beyond these, philosophy [20, 21, 22, 23], psychology [24, 25, 26, 27], biol-
ogy [28, 29, 30], sociology [31], economics [32], and law [33] mostly proceed as if agents exist, even
when their ontological status is debated, studying sense of agency, organismic organisation, and
social or institutional agency. These literatures thus split between traditions that assume agents
(natural/social sciences) and those that tend to deny, bracket them or explain them away (much of
physics/chemistry).

In this work we adopt a pragmatic stance that seeks to identify the minimal requirements for
possible definition of agents, similar in spirit to the quest to identify the minimal requirements of
cognition, or rather minimally cognitive behaviour [34]. We start by informally addressing agents as
goal-directed systems acting in an environment. Goal-directedness will provide a vast generalisation
and abstraction to the idea of self-sustainment, system will address relevant parts of the notion of
individuality and include entities beyond chemical systems, action will be used to try and differentiate
an agent’s output from mere physical happenings, and environment as a notion complementary to the
agent that is useful to frame or carve out an identity for agents as distinct entities.

To operationalise the core components of a mathematical theory of agency, we will then take
inspiration from an existing conceptual framework proposed in [35]. We will use, in particular, their
three requirements of individuality, normativity (or goal-directedness) and interactional asymmetry to
organise and discuss the role of various mathematical proposals found in the literature that are relevant
for a definition of agents. Similarly to the work done in artificial life for evolution, we will then focus on
formal methods that abstract the concept of agent, for instance, going beyond the particular chemical or
physical instantiations of systems subject to Darwinian evolution such as those part of Terran Life. In
our analysis we will thus consider different formal proposals through the lenses of a unified conceptual
framework, with a unifying mathematical notation, to see how they can be seen as complementing
each other. This will provide a more cohesive picture of the differences and complementary roles of
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these proposals, and in particular will highlight two important points that we will elaborate at the end
of the work based on an as-if approach to agents previously introduced in [36, 37] and adopted here.
Firstly, we will look at a possible individuality-normativity correspondence motivated by recent work
showing how individuality is deeply linked to goal-directedness. Secondly, we will consider the exact
formal meaning currently attributed to actions using interventionist notions [38] of causality (i.e. with
the agent seen as a causal individual acting on the environment).

To capture the main parts of a definition of agents discussed here, in Section 2 we review an estab-
lished conceptual proposal for a theory of agents, based on the ideas of individuality, normativity, and
interactional asymmetry. In Sections 3 to 5 we then proceed to classify, under a unified mathematical
language, some of the most prominent existing proposals for mathematical theories of agents that
capture at least one of the main aspects highlighted in Section 2. Finally, in Section 6t we discuss some
of the assumptions in our classification and some ideas raised by our unification attempt, highlighting
especially the strong overlap of individuality and normativity, based on a mathematical argument (for
now, working on a relatively simple class of systems) stating how identity and goal-directedness are
deeply intertwined.

2. A conceptual framework for agents

Our starting point for a conceptual framework of agents is the set of desiderata for a definition of
agents in [35]. We introduce them here to show how they have effectively driven, or at least captured,
most of the research on mathematical notions of agency discussed in the next few sections. This will
allow us to reframe existing proposals in a unifying language and systematically compare different
approaches, showing how they need not be mutually exclusive. While most of them will turn out
to have implications and consequences beyond our somewhat rigid classification, we believe it is
nonetheless important and useful to first and foremost characterise their main goal, background and
repercussions.
The three requirements advocated by [35] are:

* Individuality, which gives the basic unit of inquiry, the agent, as a system with some spatio-
temporal persistent properties, i.e. a notion of identity. The starting point is that an agent must
be a distinct entity with its own boundaries (physical, functional, etc.) that distinguishes it from
its environment. In other words, given a full system, there is a way to factorise it into an agent
and an environment. There could be multiple parallel or nested agents and environments, but
the minimum requirement is to have at least one agent and one environment, which can then be
further factorised if needed.

* Normativity, or goal-directedness, which states that an agent’s interactions with the environment
ought to be regulated according to specific norms or goals. Goals can correspond to ways in
which an agent comes to be, or keeps on persisting, but crucially are not limited to those cases.
Importantly, agents can seemingly fail to achieve goals, and still be agents. Arguably, failure is
the main characterising feature of agents which puts them in contrast to non-agents, for instance
machines of some kind, which on the other hand cannot fail to behave according to some goal.

e Interactional asymmetry, stating that an agent must be the active source of its activity, its actions,
adapting its coupling with the environment rather than being merely a passive receiver of
external forces. Agency involves the system’s capacity to adapt the parameters and constraints
that govern its interaction with the environment.
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Note that in [35] there is a strong emphasis on these requirements being intrinsic to the agent. We
will not consider this here, and discuss our alternative, as-if stance in Section 6 based on [36, 37]. In
the next three sections, we will look at how these three requirements have been explicitly, and at times
implicitly, the main driving force for formal frameworks proposing definitions for what constitutes
an agent. Some proposals focus on a single requirement, while others attempt to encompass two,
or even three at times. We do however believe that all the frameworks overviewed here have a
clear, main goal in mind that well aligns with one of these three requirements (however see the
individuality-normativity correspondence in Section 6), which will be used to map their contributions
and connections to other proposals.

In this work uppercase letters (e.g. X;, Y};) are used to denote indexed ' random variables and
lowercase (e.g. x¢, ;) their realisations. Deterministic variables are included in this convention as
degenerate random variables, i.e. X; such that Pr(X; = x;) = 1 for some constant x;. Calligraphic
letters (e.g. X, )) denote the sets over which they take values, and the symbol A (as in A(X'), A()))
is used to denote the collection of all distributions over those sets. We use the shorthand notation
p(x: | yi) = Pr(Xs = x¢ | Y& = y:) to express probabilities when there is no risk of ambiguity, and
assume that equalities of the form p(x; | yt,z) = p(x: | y:) hold for all realisations that occur with
non-zero probability. We use the following abbreviations: X,., = (Xq, ..., Xp), Xp = Xow, Xo: = Xaicos
and when considered as a whole Xj...,, we usually drop the index altogether, X = Xp.co.

3. Relational methods to formalise individuality

This first class of frameworks attempts to formally define an agent starting from the relation it ought to
have with its environment, a mode of coupling between the agent and its environment. We associate
this class of proposals with the first requirement, individuality: for an individual to exist, it must
be distinct from its environment but at the same time interact with it, since complete independence
would make it a quite uninteresting entity and undermine the very concept of action.

The dynamical systems approach pioneered in [39, 40] is an attempt to formalise this idea, moving the
explanatory focus from the agent’s internal mechanisms to the continual mutual interaction between
the agent and, importantly, its environment. The core theoretical commitment is to model the agent
with states S taking values in S, and the environment with states E taking values in £, as two open
dynamical systems whose states are governed by equations of the form:

updg: SxO0 =S, outs:S — A
upde : EXA—=E, outg: & — O (1)

These correspond to classical Moore machines, and can be generalised to systems without the factorisa-
tion between updates and output mappings (Mealy machines) as in, e.g. [41, 42]. For simplicity, in the
remainder of this work we will refer to these open dynamical systems as systems, and only explicitly
bring out different definitions if necessary. We will also overload the notation and just refer to them us-
ing their state space when obvious from context, i.e. we will talk about an agent & and an environment
&, assuming that each system is equipped with update and output maps of the above form unless
otherwise stated. For a more general, structural treatment of systems we refer to [43, 44]. The systems
above are assumed to be deterministic, and in the original work [39, 40] also in continuous time. Here,
for simplicity, we introduce them in their discrete time counterpart to simplify the exposition, since

1Usually by time t € T, unless otherwise stated.



% Mathematical approaches to the study of agents

generalisations to other kinds of systems (including those in continuous time), don’t affect the overall
arguments [43]. The central insight is that these two systems can be coupled, i.e. connected to form
a single autonomous dynamical system, X, whose state space is an appropriate composition of the
agent and environment state spaces. The relevant behaviour of an agent is not something generated
by the agent alone, but is a property of the trajectories of this entire coupled system. Agency is not
located in a controller issuing commands, but distributed across the entire feedback loop. The notion
of adaptive fit provides the criterion for successful agency. An agent is considered adaptively fit as
long as trajectories of the coupled system A’ remain within a specific constraint, or viability volume,
C in the total state space &, i.e. as long as agent and environment interact in a way that preserves
certain properties represented by C. For a biological organism, this constraint could mean survival,
i.e. maintaining the integrity of its autopoietic (self-producing) processes [28]. For an agent more
in general, the constraint is defined by the goal it needs to accomplish (e.g. for a robotic vacuum,
the floor remaining clean). Agency is thus the capacity to interact with the environment to ensure
the coupled system’s trajectory satisfies the constraint C. This makes agency a relational property,
defined not by what an agent is, but by its ability to maintain a specific kind of relationship with its
environment over time. This perspective is explored in detail using gliders in the Game of Life as
a toy model [45, 46, 47, 48, 49, 50]. By treating the Game of Life update rule as an artificial physics,
[47] formalises a glider’s self-maintaining organisation as a closed process dependency network. This
provides a bottom-up, relational definition of the glider’s identity. Related work [46] then characterises
the agent-environment relationship by exhaustively mapping the interaction graph between a glider
and its surroundings. This graph defines a macrodynamic function, upd; : G x D — G, where §
is the set of glider states and D is a set of non-lethal perturbations, see also [51]. The concept of
structural coupling is then formalised by finding the mutually consistent trajectories of the agent and
the environment, yielding the set of all possible glider lives.

The free energy principle [52, 53, 54] defines an agent as a system that persists over time by main-
taining a statistical boundary that separates it from its environment. This requires the full system to
be described as a stochastic differential equation

dXy = f(Xp)dt + o (Xe)dW; (2)

which possesses a non-equilibrium steady-state density, p(x). Here, W; is a standard Brownian motion
in R?*, and the flow f € R" and ¢ € IR"** are smooth vector and matrix fields, respectively. - On this
view, the defining feature of an agent is the statistical boundary known as a Markov blanket, claimed
to induce a factorisation of the states of the full system, X, into four subsets. These subsets include
internal states, S, that constitute the agent, external states, E, that constitute the environment, and
blanket states, B = (O, A), that mediate between the internal and external states and are composed
of sensory states, O, that are influenced by external states but not internal states, and active states,
A, that are influenced by internal states but not external states. It is however unclear at this stage
what conditions are required for this factorisation to hold over time, i.e. once we consider Sy, E;, Oy, Ay
instead of S,E,O, A [55, 56, 57, 58, 59]. According to its proponents, this structure of influences,
often addressed as sparse coupling in the system’s flow, f(X;), ought to guarantee (but see criticisms
above) a crucial conditional independence at non-equilibrium steady-state: internal and external
states are statistically independent when conditioned on the blanket states. This is formally expressed

ZNote that proponents of the free energy principle often emphasise “generalised coordinates” as a label for state
augmentation in continuous time for, with Brownian motion in higher dimension to reduce non-Markovian processes to
Markovian ones [53].
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as a conditional independence, Pr(S,E | O,A) = Pr(S | O,A)Pr(E | O, A), or more compactly
(S L E)| O, A, which holds within a time slice (i.e. for a time-synchronous blanket) but generally fails
once we consider the full history of observations and actions (i.e. for a time-unrolled blanket) [59, 58].
This statistical insulation is the formal definition of what constitutes an agent, it is the boundary
that carves the agent out from the rest of the system. It is often claimed that a consequence of
this boundary is that internal states must infer the state of the external world, based on classical
results from cybernetics [60] and control theory [61]. However these claims remain hard to verify
given the role of different possible Markov blankets (within a time slice, or over trajectories) and of
another fundamental assumption of the free energy principle, the existence of a synchronisation map,
¢ : S — &£. This map captures an explicit relation between an agent and its environment, such that for
two given functions gs : O x A — Sand g¢ : O x A — £, within a time slice:

85(0¢, At) == Epy(s,(0,,4,)[St]
gE (Otl At) = IEPr(Et\Ot,At) [Et] (3)

we have
0(51) = ge (85'(51)) - @

The synchronisation map is a function that links an agent’s (expected) internal states to the (expected)
external states they supposedly infer. The existence of this map is not guaranteed, as it depends on
the condition that any two blanket states mapping to the same expected internal state must also map
to the same expected external state, see [62] for a discussion of the linear case. This map is what
allows an agent to ostensibly infer its environment, since an agent is not directly influenced by states
E;. It can only register its effects through sensory states O;. The presence of this map implies that
the internal states S; parametrise a variational density, Qs(E;), which serves as a probabilistic model
of the external states, given the blanket states, for a definition using the synchronisation map above
see [63, Eq. 85]. The persistence of this entire factorised system at non-equilibrium steady-state then is
thought to imply that its dynamics must follow a specific path, one that minimises a functional called
variational free energy, F(O;, A, S¢) that is defined as:

F(Ot, At, St) = ]EQS(Et)[ln QS(Et) — lnPr(Et, Ot, At, St)] (5)

This can be expressed as an upper bound on the surprisal (negative log-probability) of the agent’s own
states, actions and observations F(O;, At, St) = —InPr(Oy, At, St) + Dxr[Qs(Er)|| Pr(Es | O, At, St)]
and according to this proposal, agents are systems that minimise free energy, since that is what ensures
that their surprisals remain within acceptable bounds over time.

The Bayesian interpretation map framework [63, 41] aims to overcome some of the possible limitations
of the free energy principle, highlighted for instance in [57, 55, 56, 58, 64, 65, 66]. Following Dennett’s
intentional stance [67], this framework provides a formalisation of what it means to interpret a
physical system as having beliefs and for its dynamics to be interpreted as a process of Bayesian
belief updating [63]. Furthermore, it also provides criteria to interpret a physical system as taking
actions according to its beliefs so to achieve a goal [41]. The core of the framework is the interpretation
map, a function ¢ : S — Pr(H) proposed by an observer to link the physical states S; of an agent -,
taking values in S, to abstract belief states, i.e. probability distributions, over hidden variables of a

$More precisely, a system that can be interpreted to be an agent.
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model H;, taking values in H. The agent’s physical state transitions are governed by a machine kernel
updg : O x § — Pr(S), which gives the probability of transitioning to a new state S;;1 given the
current state S; and a sensory input O;. An interpretation includes both an interpretation map and
a model kernel x : H x A — Pr(H x O) which represents the agent’s (potentially incorrect) model
of how its actions A; influence the hidden state and produce sensory inputs. Note that this kernel
combines update and output maps into one, assuming that they aren’t necessarily factorisable, unlike
the dynamical systems approach discussed earlier. Interestingly, the probabilistic system H can, but
need not be the environment, £. In many interesting cases it however will be at least a model, to some
extent veridical, of the environment [68] or of the whole agent/environment combined system [69].
An interpretation is said to be consistent if the physical dynamics of the agent and the belief dynamics
align perfectly. This is captured by a consistency equation, which, unpacked from its category-theoretic
form, states that for any possible next physical state Sy 1, the belief it represents, {(Hy+1 | S¢+1), must
be equal to the Bayesian posterior belief, calculated from the prior belief ¢(H; | S;) and the evidence
O;. Formally, this means that

Y ren K (Hig1, O | Hy, 70(St)) ¢ (Hy | Si)
Yk Hyren K (Hepr, Of | He, 7t(Se))(Hy | Se)’

where 77(S;) is the action taken in state S;. This framework has been used to show deep connections to
control theory and concepts of agency in that field, proving that any system satisfying the assumptions
of the classic internal model principle [69] and of the good regulator [68] can be interpreted as
performing Bayesian updates on a model built by an observer, which can sometimes correspond to
the environment.

Cartesian frames [70] provide on the other hand a mathematical framework for modelling agency
that is designed to overcome the limitations of traditional models that treat the agent-environment
boundary as a fixed, primitive reality. Cartesian frames constitute a way to carve an agent-centric
perspective of choice onto an objective, physical set of all possible outcomes of a particular full system,
allowing for an analysis of agency across different levels of description. The fundamental building
block of this framework is the Cartesian frame, a Chu space J = (S, &, -) over a set X, a structure that
generalises a decision matrix. Here, S is the set of all possible ways the agent can choose to be, e.g. its
states, £ is the environment’s set of possible states, and the outcome function - : § X £ — X maps
agent-environment pairs to a set of possible worlds of the full system X. An agent is defined as a
system S that can be obtained from the factorisation of a larger system X whose state can be composed
with the environment £ to produce X itself. An agent can be carved out to be a separate system
from the environment, but its identity and interface with the environment are subject to constant
change. Note that here there is no explicit notion of dynamics, although one could understand the
outcome function as mapping between trajectories, therefore folding time into the sets & and &, nor of
an agent’s inputs (observations) O or its outputs (actions) .A, which are instead derived as follows.
Observations are defined as:

O={X'CX|Vsy,s1€83Ise€S8,secif (X,s0,51)} (7)

W(Hiy1 | Se41) = (6)

where if (X7, sg,s1) denotes the set of all s € S such thatforalle € £, (s-e € X') — (s-e =sp-¢) and
(s-e¢ X') = (s-e=s;1-e). Agents in this setting observe events, which are either true or false, not
variables in full generality. We will say that given a frame 7, its observables, O, are the set of all X’
such that J’s agent, S, can observe whether x" € X' is true. Actions are defined as:

A={X' CX|TFseSVeec&s-ecX}N{X"CX|IsecSVecls-e¢d X"} ®)

7
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where X’ gives a set of world states an agent can ensure, and X" a set of world states an agent can
prevent. The framework’s power comes from its use of morphisms or maps between frames. A
morphism from frame J = (S,&,-) to J' = (§', &', *) is a pair of functions (¢: S — S, h: &' — &)
that satisfies the adjointness condition: s - h(e’) = g(s) x e for all acts s € S and environment states
¢’ € £'. This mathematical structure allows for formal operations like moving between different levels
of description (coarsening or refining the set of possible worlds &’) and, most notably, composing
or decomposing agents by modelling subagency of different kinds, additive to describe agents after
some commitment to particular subsets of choices or states, and multiplicative to define agents within
a larger agent.

4. Prediction-based methods to formalise normativity

This second class of frameworks posits that agents are systems that possess some kind of predictive
power, about themselves, their environment or both. On this view, agents are portrayed as systems
that can be characterised in terms of their ability to predict features that are crucial for their goals. At
this stage we remain agnostic about whether this ability to predict is intrinsic for the agent or in the
eye of the beholder [71] and return to this in Section 6. We also note that some of the proposals in the
previous section, chiefly the free energy principle, make strong claims about agents and their ability to
predict features of their environment. This is related to another point we will discuss at the end, a
correspondence between individuality and normativity.

The information theory of individuality [72] provides a quantitative way to identify individuals at
any scale by defining them as aggregates that maintain temporal integrity by propagating information
from their past into their future. Building on earlier work on information-theoretic autonomy [73],
this approach analyses the total predictive information that the present state of an agent, S;, and
the state of the environment, E;, jointly provide about the agent’s next state, S, captured by the
mutual information I(S;41; St, E;). The framework’s key insight is that this total information can be
decomposed in two distinct ways using the chain rule for mutual information:

[(St41;St,Er) = I(Se+1;51)  + I(St11;Et | St) = I(St+1; Et) + I(St41; St | Er)
——— —_—— —_———

organismal individuality =~ environmentally determined individuality colonial individuality

9)

These decompositions define a taxonomy of individuality. Organismal individuality, proposed in [73]
as a measure of autonomy for systems that control their environment, measures the information
that an agent’s own past provides about its future, ignoring the environment. It captures highly
autonomous individuals that are largely in control of their own dynamics. Colonial individuality,
see again [73], instead measures autonomy for agents that are driven by their environment. More
specifically, the additional information the system’s past provides about its future, once the influence
of the environment’s past is already taken into account. * This ought to capture more loosely-coupled
individuals, like microbial colonies, whose persistence depends heavily on ongoing interaction. To see
this, [72] employs tools from partial information decomposition to more carefully unpack the influence
of environment and agent. We do not however venture into this level of detail here. Environmental
determined individuality is on the other hand defined by the information flow from the environment,
which identifies entities whose structure is largely imposed by external forces.

4This also corresponds to Granger autonomy, or G-autonomy as proposed in [74] for Gaussian variables, see [75].
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The agent description of [76] provides a different formalisation of Dennett’s intentional stance [67],
framing the question of agency as a Bayesian model comparison problem. In this setup, an observer is
presented with a system’s behaviour, i.e. a trajectory of outputs, or actions for a candidate agent, A.;,
given inputs, or observations for a candidate agent, O.;, and must decide which of two explanatory
models is more probable. The model M, describes the system as a device, a reactive machine
whose behaviour is explained by a direct, mechanistic input-output mapping, which is associated to
Dennett’s physical stance. The likelihood of the trajectory under this model is a weighted average
over all possible device descriptions:

Md(A:t ‘ O:t) = Z d(A:t ’ O:t) Wy, (10)

deMy

where d : (O x A)* — A(A) produces a probability distribution of outputs given an interaction
history of inputs O.; and outputs A.;, and wy is a prior over devices. The model M; identifies instead
the system as an agent whose behaviour appears as the result of optimising a goal or utility function
u € U, proposed to correspond to Dennett’s intentional stance. The likelihood is derived using inverse
reinforcement learning;:

t ’ Ot Z 7Tu it ’ O:t‘) Wy, (11)

ueld

where 71, : (O x A)* — A(A) is the optimal (or near-optimal) policy for that utility function, and w;
is a prior over devices. The framework then uses Bayes’ rule to calculate the posterior probability that
the system is an agent:

Ms(Azt ‘ O:t)
Md(A:t | O:t) + Ms(Azt ‘ O:t)

assuming equal priors. The prior weights (wy, w,), which can be based on the Kolmogorov complexity
of describing the device or the utility function, provide an intuition for this definition by thinking
about the compression aspect that arises from the principles of algorithmic information theory. In
particular, a goal-based description is the better description if the complexity of describing the goal
is lower than the complexity of describing the intricate mechanistic policy that achieves it. This
framework thus quantifies the intuition that agency is a useful concept when it provides a more
compressed, predictive explanation for a system’s behaviour, and while reliant on Bayesian model
comparison, extensions can make use of different objectives, see for instance [77].

Complete local integration [29, 78, 79] seeks to describe an important property of agents within a
dynamical system by quantifying the internal coherence of the parts that constitute them. The core
idea is that an important aspect of being an agent is that a system can be characterised as an (i-)entity,
defined in [78, 79] as a spatiotemporal pattern where every part (which is itself another spatiotemporal
pattern) makes every other part more probable. This is formalised through the measure of specific
local integration. For a given spatiotemporal pattern, i.e. a set of fixed values of a candidate agent’s
states Syy = sy indexed over time and space by WW C T x R, and a partition ¢ of the set of variables
W into blocks b, the specific local integration is defined as:

: Pr(Sy)

p(agent | Ay, O4) = (12)

(13)

A positive specific local integration indicates that the whole pattern Sy is more probable than would
be expected if its parts (defined by the partition ¢) were independent. To identify truly integrated

9
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entities that can serve as candidate agents, the framework introduces then complete local integration,
which is the minimum specific local integration value over all possible non-unit partitions of the
pattern:

1(Sw) e mig(Sw), (14)
where £(WV) is the partition lattice of W, i.e. the set of partitions of W partially ordered by refinement,
and 1yy is the unit partition. A spatiotemporal pattern is then defined as an i-entity if its complete
local integration is greater than zero, 1(Syy) > 0. The claim here is thus that agents, as individuals, are
systems with positive complete local integration. This means that a pattern is integrated with respect
to every possible way of decomposing it. The importance of positive complete local integration is
formally established through a disintegration theorem, demonstrating that i-entities are the fundamental,
maximally disintegrated components of a system’s trajectory. Positive complete local integration also
implies that, from an information-theoretic perspective, the surprisal (information content) of the
whole entity is lower than the sum of the surprisal of the parts (cf. the minimisation of surprisal as a
central point of the free energy principle [52, 53, 54]). This tells us that the whole is spatially more
predictable (lower surprisal) than the parts, and temporally more predictable because the presence of
an entity at a certain point in time makes it more probable that a corresponding entity will exist at a
subsequent moment. From a coding-theory perspective, the fact that a i-entity has positive integration
across all possible partitions means that the most efficient, compressed description of the pattern is
always the one that treats it as a single, integrated whole. Any attempt to describe it as a composition
of independent parts results in a less efficient, longer description, meaning that a i-entity captures in
some sense a pocket of predictability that arises from a system’s dynamics.

Rosen’s theory of anticipatory systems [80, 81, 82] usually refers to the study of biological systems,
but similarly to what we do here, focuses on aspects of living systems not directly related to their
ability to undergo (Darwinian) evolution. Because of this, we will treat this as a framework attempting
to capture aspects of agency, in particular claiming that agents are anticipatory systems. Anticipatory
systems are closed systems characterised by a modelling relation expressed as a commuting diagram
between a system, say an agent S, often addressed as natural system in this literature, and a system, #,
usually called formal system which serves as its epistemic, predictive model or abstraction, and is built
by an observer. The maps representing state transitions are called causal entailment for the physical
laws in the agent, e.g. its dynamics, c : S — S, and inferential entailment for the logical rules of the
formal system, e.g. the dynamics, i : H — H. The mappings between the systems are the encoding,
e : § — H, which represents measurement of the natural system, and the decoding, 6 : H — S, which
represents an interpretation of properties of a formal model in the natural world. A modelling relation
between S and H exists if the following diagram commutes [83, 4.14] in the appropriate setup

S ——>H
cl lj (15)
S+ H

meaning that the evolution in the natural system S must be equivalent to the path of encoding,

inferring, and decoding, i.e. c = doioeg, and

i=¢(c), (16)

5We can imagine these objects to be sets in the category of sets and relations for instance, Rel, with arrows given by
relations or multi-valued functions, since this is the starting point of the categorical setup of anticipatory systems [82, 84].
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a condition stating that the updates of the formal model must be related to the updates of the natural
system, or agent. " The system H can be seen as a predictive model because from the perspective of S,
one can first encode its state via ¢, then process it as part of the model using i and finally decode the
result with J, checking that it is equivalent to its own evolution [82]. We note the resemblance with
some of the arguments formalised in [69], in particular when the system H is a model of the agent and
its environment, however the exact connection remains unclear and won’t be explored here.

5. Causality-based methods to formalise interactional asymmetry

The third class of frameworks seeks to operationalise agent causation by arguing that an agent’s
internal states are the genuine causes of its actions and their effects in the world. These frameworks
aim to identify and quantify this causal power, overcoming some of the philosophical challenges of
defining causality. We note that for these proposals too, it is unclear whether causality ought to be
portrayed as an intrinsic feature of agents (it often is portrayed as such) and return to this in Section 6.

Using integrated information theory (IIT) [86, 87], traditionally portrayed as a theory of consciousness,
an agent has been defined as a physical system that constitutes itself as a single, irreducible causal
entity [88, 89, 90, 91]. The existence of an agent is assumed to be determined by the system’s internal
cause-effect power [90, 91], defined as the degree of causal irreducibility and quantified by integrated
information, ®. We start with a full system with states Xy indexed over time and state  C 7 x V,
corresponding to a multivariate stochastic process. For each different full system variable X] (i.e.
indexing over 7 only), integrated information is defined as the following (note that this varies across
versions [87]):

¢(X) = min (mgx (mgm (DiSt [V(Qtﬂ | X1);8(r(Qex | X{))D)) (17)
such that the subset of variables X| for which integrated information is positive, ¢(X; = x}) > 0,
are called mechanisms. We unpack this equation in more detail here. To define mechanisms, this
framework requires that variables X’ specify information about both their causes and effects (it is not
enough to do one or the other), this is captured by the first min;; in the equation (if no information is
specified about either causes or effects, this will return 0, making this system not an agent). Variables
Q are another subset of the full system variables, called purview, over which the cause and effect
repertoires of a mechanism in a state are calculated, and are chosen to maximise ¢(X;) via maxg. ¢
is a partition of variables in the cause/effect repertoires, see also the description given for complete
local integration [29, 78, 79] which is inspired by this work, and selecting the one that makes the least
difference via min; gives the so-called minimum information partition. To calculate this, we need a
distance Dist[—; —] which captures the degree to which a system is integrated. A system is said to be
integrated if its causal dynamics cannot be decomposed into independent parts (for the specific choice
of a measure in different versions, see [87]). Formally, this means that larger distances give larger
¢, capturing the idea that a system’s joint causal-effect structure cannot be factorised into separate
substructures without loss of information. Using the do-operator from do-calculus [38], introduced
to simulate a notion of physical intervention that deletes certain functions from a model, replacing
them with a constant X = x, the effect repertoire is given by r(Qp41 | X}) = IT; Pr(Qiy1 | do(X} = x})),

®Different attempts to formalise this using a categorical setup, as a functor between categories of natural systems and of
formal models, can be found in, for instance, [83, 85, 82], but the details won’t be covered here.
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and marginalises purviews over non-X' variables leaving only possible dependencies on X'. On
the other hand, the cause repertoire is given by r(Q;—1 | X{) = 1 [T, Pr(Q;-1 | do(X}, = x},,)) with
L a normalising constant, which marginalises instead over variables X’ to remove common inputs
from non-Q variables. Variables X’ with positive integrated information thus specify information
about purviews Qi1 to the extent that conditioning on them, (Q;+1 | X}), constrains the state of the
purviews when compared to their unconstrained probabilities (Q;+1). Rather than simply assuming
(top-down) a system that can be factorised in mechanisms and non-mechanisms, this framework can
also be used to define (bottom-up) a system of interest, for instance an agent S, as a collection of
mechanisms X', the minimal collection that can’t be factorised without loss of integrated information.
This can be done by defining a system-level integrated information [91]:

@(xp) = min  Dist [e(x)iC(¢(x))] (18)

where the cause-effect structure C(Xj) is a set of mechanisms. This definition is quite relevant for [35]’s
notion of interactional asymmetry. In particular, following [88, 92, 89], an agent’s causal boundary can
be defined as a local maximum of ®: as an emergent macro-level entity with greater causal power than
its underlying micro-constituents. For large systems, this highly integrated state is achieved by being
poised near a critical point (a phase transition), where integration diverges. Based on this, [88, 92, 89]
introduce a notion of asymmetry to define autonomous agents as systems that must be the (sub)system
which causally drives their interaction with the environment, rather than being determined by it.
This is shown for example in [88], where autonomy is measured in a model by the agent’s ability
to dynamically modulate its causal coupling with the environment. Here, the agent, which is only
formed of sensors O and motor A units, can in some cases be the most integrated system, above
and beyond the full system & including the environment &, i.e. ®pyg > Pp ¢, and thus can be
seen as setting its boundary to demarcate itself from the environment. In other situations, the full
agent-environment system becomes the most integrated unit (Ppar > Ppa), with the agent recruiting
(parts of) the environment to change its identity and causal presence on the remaining parts of the
environment.

Crucially for this section, IIT has been especially used to investigate when an agent can be said to
be the actual cause of its own actions [93, 91], and therefore asymmetrically driving its interactions
with the environment. Using a similar formalism, derived from the same principles underlying
integrated information [90], one can define the causal strength R, a measure of irreducible information
effects. To this point, action variables A; can be used to specify information about their cause, a subset
of an agent’s states S;_, taking values in S’ C S, quantifying (in bits) how much information is lost
when applying a partition ¢ that splits causes and effects into subcomponents to test their local causal

links:
S R(At) = max [ min | lo < (S | A )
AN S CIR)

where r(S]_; | A¢) is the causal repertoire defined above.

Mechanised Causal Graphs [94] provide another proposal of causality-based methods. The core
idea is that “agents are systems that would adapt their policy if they were aware that their decisions
influenced the world in a different way”. The starting point is a mechanised structural causal game,

7In [93] we find simple probabilities in place of cause repertoires, but we believe this to be a typo since in the original
reference (on which this work is based) seems to define causal strength using cause repertoires [90].
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a tuple M = (N, Py, G,Pr(Py)). As in the standard definition of structural causal models, N is
a set of endogenous variables indexed over state V, {Ny},cp, Py is a set of exogenous variables
indexed by endogenous variables, {N, = gn, (N, Py,)} is a set of structural equations indexed by
endogenous variables, and Pr(Py) is a distribution over the exogenous variables. The mechanised
version however extends the standard definition in two ways. The first extension comes from the
definition of mechanised structural causal models and is given by a factorisation of endogenous
variables into object-level and mechanism variables, N = X U X. For each object-level variable X, a
corresponding mechanism X parametrises the relative structural equation. The second extension is the
assumption that endogenous variables can be factorised into chance (environment’s state), decision
(actions) and utility variables, which combined with the first extension give X = EU AU U and
X = EUAUU. The crucial idea behind this framework is that when an object-level variable is a
decision, A, its associated mechanism, A, is formally treated as an agent’s decision rule or policy. The
mechanism is the reasoning that produces the decision, which is then assumed to be the action. This
framework thus provides a way to build mechanised structural causal games and identify decision
nodes and their associated mechanisms. To do it, it distinguishes between two fundamental types
of interventions [38]: standard object-level interventions, do(X = x), which set a variable’s value,
and mechanism interventions, do(X = %), which alter the function ¢* itself, and must satisfy the
following condition: given an object-level variable X, and a related mechanism X,

Pr (X, | Pa®*,do(X, = %)) = Pr (X, | do(X, = %,)). (19)

For decisions, this means that one can distinguish between interventions on the action itself, do(A = a),
and interventions on the agent’s policy, do(A = &), which force the agent to adapt. The latter
corresponds to a change in the world’s dynamics that a prospective agent can be made aware of and
adapt to. Agency thus is discovered by performing interventions on mechanism variables, in particular
when these are deemed to be policies. To determine this, [94] defines a specific causal structure, the
terminal mechanism edge. This edge links a utility’s mechanism to a decision’s mechanism, I — A
and is defined by two conditions tested via mechanism interventions, interventions that sever an
object-level node from its consequences. The first condition determines if a node is a utility node.
The rule is that an agent’s policy A must remain sensitive to the utility’s mechanism U even when
the utility’s own consequences are nullified. For any structural intervention on the children of U,
do(ChY)), there must exist a mechanism intervention do({I = ) such that:

Pr (A | do(#,ChY)) # Pr (A | do(ChY)) (20)

This identifies U as a utility node because the agent values it for its own sake, not for its downstream
effects. The second condition tests if a node is a decision node. To be one, the agent’s policy, A must
become insensitive to the utility’s mechanism when the decision’s own consequences are nullified.
For any structural intervention on the children of A, denoted do(Ch?):

Pr (A | do(#i,Ch?)) = Pr (A | do(Ch?)) (21)

This identifies A as a decision node because the policy only adapts for the sake of achieving the
decision’s consequences. Notice how this approach remains agnostic with respect to time and to a full
factorisation of a system that includes an agent’s states and its observations, which could perhaps be
represented by some mechanism variables, but whose status is otherwise unclear.

Using different measures of causality and a different notion of intervention from that of Pearl [38],
semantic information is defined as the information that an agent has about its environment that is
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causally necessary for the agent to maintain its own existence over time [95]. This information ought
to be causally necessary for an agent because often an agent needs to take actions in the environment
to ensure its existence, and a mechanism to disentangle relevant from irrelevant information is thought
to be a good candidate explanation for how this can be achieved efficiently [96]. The theory begins by
defining an agent as a far-from-equilibrium system S that actively works to maintain its own existence
by keeping itself in a low-entropy state. This degree of existence is quantified by a viability function,
V. The primary function proposed is the negative Shannon entropy, £, of the system’s marginal state
distribution, Pr(S;), at a time t, V(Pr(S¢)) = —$(S;). The core claim is that an agent maintains its
viability by using semantic information, which is formally defined as the portion of syntactic (Shannon)
information the system has about its environment, &, that is causally necessary for its self-maintenance.
The trajectory of the system under its actual dynamics is compared to intervened trajectories where
correlations between the system and environment have been scrambled. Here, “intervening” does
not mean a surgical Pearl-style do(-) that sets variables to fixed values [38]. Instead, the framework
perturbs only the information channel from environment to system by coarse-graining what the
system can distinguish about £ (“pre-garbling” of the channel), while leaving the environment’s own
dynamics otherwise unchanged. Concretely, one replaces the response kernel from environment to
system with a version that depends only on a coarse-grained signal y(E;):

B’ (Sis1 | St Er) := Pr(Se41 | St, u(Et)), (22)

so the system “sees” u(E;) rather than E;, a degradation of input distinctions. By varying y, one
obtains a family of partial interventions that “scramble” correlations between S and £ to controlled
degrees. If u is the identity, the intervened and actual processes coincide, if u is constant (“fully
scrambled”), all transfer entropy from & to S vanishes. The value of information, AV, is the loss in
viability that results from such an intervention at time #:

AV, = V(Pr(Sy)) — V(Pr"(Sy)), (23)

where Pr(S;) is the actual distribution and Pr’(S;) is an intervened one, for a coarse-graining map of
environment states y : £ — £.” To isolate the essential, meaningful information, the theory defines
an optimal intervention, Pr’P'. This is the intervention that preserves the minimum amount of initial
mutual information, I (So; Ep), required to achieve the exact same viability as the unintervened system
at a time T:

pr e argmin 5« (So; Eo) s.t. AVy =0. (24)
pr"

All information that survives this scrambling process is assumed to causally necessary and therefore
semantic. The amount of semantic information is the quantity of syntactic information, X, preserved
under this optimal intervention. For information stored in the initial state, this is:

Z‘s’tored = IISrOPt(SO} EO)- (25)

This framework considers also a notion of observed semantic information that can be acquired. This
is thought to be more characteristic of active agents and is derived by intervening on the dynamic

81n the original presentation the coarse-graining is a deterministic function f. More general stochastic coarse-grainings
(Markov kernels) are a natural extension for input degradation of the environment-to-system channel.

14



% Mathematical approaches to the study of agents

flow of information, as measured by the amount of transfer entropy that remains under this optimal
intervention ":

T

Tobserved = 3 TEsopt(Eyt—1 — St) = Isomt(St; Exp—1 | Sip1). (26)
t=1

This is the minimal rate of information flow that is causally necessary for the agent to regulate its
coupling with the environment, and to take appropriate actions to maintain its existence. It quantifies
how an agent’s perceptions are meaningful and essential for guiding its behaviour over time. These
measures lead to a rigorous definition of an agent: a physical system is an autonomous agent to the
extent that it possesses a high value of semantic information, X, both in terms of stored and observed
semantic information. This notion is derived from the system’s own dynamics and it’s relative to a
goal, in this case the imperative to maintain a low-entropy existence, but could in principle be defined
for different goals.

6. Discussion

Our work provides a characterisation of different formal approaches to the study of agents through
the lenses of a unifying conceptual framework [35]. This framework relies on three requirements:
individuality, normativity or goal-directedness and interactional asymmetry, which we believe to
capture desirable aspects of a theory of agents. This framing allows us to consider the strengths of
each proposal, and what they are missing given these three requirements. Under this light, it appears
that none of the existing theories currently analysed here meets all the highlighted requirements.
Some theories can be seen as implementing two of them, especially in the sense we will see below for
individuality and normativity, but none appear to embrace them all. This can either mean that none
of these theories analysed here is currently a complete theory of agency (as directly stated in several
cases) or that some of the requirements adopted here are in fact not necessary. For the latter, the major
candidate is perhaps interactional asymmetry. This is because it is hard to imagine a way to talk about
agents that doesn’t include a way to formalise individuality, defining the unit of investigation, and
goal-directedness, giving a way to describe what distinguishes agents from mere physical systems.
It is also the case because while this requirement seems to make sense on the surface, is in fact not
formulated very precisely, see [37]. It is also perhaps more suggestive, if at all, of a definition of
higher-order agents, agents that may require some notion of causality [96], as opposed to the form of
minimal agency advocated here as part of a definition of, among others, living systems.

One of the core features of the formalisation of agency proposed in [35] is that agents are systems
whose individuality, normativity and asymmetry are intrinsic defining properties of what it means to
be an agent. Identity should not be imposed by an external observer, as with an artifact, but ought
to be an intrinsic and ongoing achievement of the system itself. An agent’s norms should also not
be arbitrary or merely assigned by a designer, but rather generated from within the system itself,
based on its need to maintain its own organisation. Similarly, interactional asymmetry ought to
be induced by the internal causal structure of an agent, and not be dependent on external factors.
Among the approaches we analysed and reframed in this work, several however explicitly assume
that agency is, at least in part, an observer-dependent property [78, 76, 52, 63]. Other proposals could
also be interpreted as making a similar assumption, albeit more implicitly. For instance by choosing a

9Note that [95] assumes Markovianity as a simplifying assumption, but as explicitly stated it is not strictly necessary, so
we give here the version of transfer entropy that considers all the histories.
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good state space over which information theoretic measures can be applied [72], by building a model
space over which structural causal models are well defined and meaningful for questions related to
agency [94], or by requiring knowledge of other systems over which to calculate the maximum degree
of causal power [97]. To fill this explanatory gap between intrinsic and extrinsic, observer-dependent
proposals, following [36, 37] we adopt a more pragmatic “as-if” approach to the study of agents. This
means that an adequate account of an agent should, in our opinion, include the requirement that for
an observer, a candidate agent ought to have beliefs like an agent, act on the environment like an
agent, and follow goals like an agent. Intrinsic aspects of agency could still be deemed constitutive of
a full definition, but would just further be refining this intuition. No intrinsic aspect of agency should
appear in systems that cannot be interpreted to be agents (whether they are not) by an observer. In
this sense, we consider as-if agency a necessary, but perhaps not sufficient if intrinsic aspects ought to
be included, condition for agency.

This as-if stance has two consequences in the present work. Firstly, the fact that at least in an as-if
sense, individuality and normativity are deeply connected. To see this, we first note that at a high level
the relational methods used to describe individuality and the predictive methods seem to overlap
considerably. For instance, the theory of individuality [72] and complete local integration [29, 78, 79],
which we described as predictive and relevant for normativity, were originally introduced to define
individuality. On the other hand, relational methods such as the free energy principle [52, 53, 54] and
the Bayesian interpretation map [63, 41] seem to suggest the necessity of a model that is in some sense
predictive for an individual. This is a consequence of the a possible identity-normativity correspondence.
Informally, this captures the idea that identity, as a relation between agent and environment, necessarily
implies the presence of goals as relevant properties of the coupled agent-environment system that
the agent can predict and achieve. Conversely, this also means that specific goals give rise to ways to
carve particular identities out of a (dynamical) system. Formally, this has been shown for a simple
class of systems in [68], similar to the one of [39, 40], except for the fact that the environment need
not factorise into separate update and output maps, see Eq. (1), and that we have now included a
well-defined notion of beliefs for a candidate agent. Under the assumptions of [68], one can say that
any system achieving a goal, described as the ability for itself and its coupled system to stay within a
viability volume C (the “good set”), can be interpreted as an agent performing Bayesian inference or
filtering (depending on the context) on another component, often just (a model of) the environment.
Or with a slight abuse of terminology, as a system predicting its own environment. This Bayesian
interpretation relies on the existence of an interpretation map from states of the first system to beliefs
on states of the second system that obeys a consistency equation equivalent to Bayesian updates under
different assumptions. In other words, it describes a relation between agent and environment that
satisfies some formal requirements and builds of the presence of an individual, the agent. Thus, given
a full system that achieve a goal in the above sense, the full system can in principle be factorised into
an agent and environment coupled systems. This factorisation is not unique beyond perhaps some
trivial case, so an interpretation depends (among other things) on where the boundary between agent
and environment is drawn. However, a valid interpretation must obey some consistency constraints,
hence factorisations are not arbitrary.

As explained in [68, 69] this correspondence follows from the old: “Every good regulator of a
system must be a model of that system” [60], roughly claiming to provide a mathematical statement
about how systems that achieve some goal must do so by modelling their environment. The math-
ematical grounding of this statement is however unclear, and later only partially formalised with
the internal model principle in control theory [61], under rather strong assumptions as explained
in [69]. As suggested by [98], this statement also forms the basis of frameworks such as the free energy
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principle [52, 53, 54], stating roughly the same idea but for a larger class of systems than the ones
covered by [60]. We believe, however, that [68] makes this claim more formal and mathematically
precise, and while limited for now to a class of systems arguably smaller than the one used by the free
energy principle, within this class the claim applies to systems under quite general conditions.

The second consequence is a more coherent treatment of actions. In general, determining whether
an agent’s actions can be formally regarded as the consequence of causal interventions can be con-
ceptually and formally challenging. This is because there is a difference between an action that is
produced by an intervention, and an action that can be treated as-if it was produced by an intervention.
In Pearl’s structural causal models for instance, the first perspective implicitly assumes that an agent’s
output, its actions, are “local surgeries” performed by some interventions, i.e. one has to assume
that some other entity (another agent?) implements these interventions as manipulations of a model
via the do-operator [99]. In other words, under this interpretation some entity’s actions (for instance
a scientist’s) will correspond to interventions on a model, A = {interventions on model M}. The
role of this entity is however unclear: it has to somehow replace a variable’s structural equation and
severe its causal dependencies so that an agent can perform an action. The second perspective just
re-describes the process of some agent choosing its own actions as an intervention, with its policy,
i.e. the map from states/beliefs to actions, seen as soft or policy intervention [100], one where not all
causal dependencies are severed (to allow for dependencies on the agent’s previous states/beliefs
and actions) [101]. This perspective doesn’t need to introduce extra entities, but in some sense it
could be said that it simply re-describes existing knowledge using ideas from causal reasoning. It is
however non-trivial: this less ontologically committed perspective allows us to consider also cases
where actions cannot in fact be seen as some kind of intervention. For instance, in off-line/off-policy
reinforcement learning, where observations can be originated by something other than the agent
itself (a teacher, or nature itself) and thus causal interventions by an agent don’t really give a natural
language to describe policies it generates [102, 100].

An aspect we mostly overlooked in this work is that mathematical theories of agents ought to
capture agency that can appear at different levels of abstraction. This ties directly with theories of
emergence describing intuitions and formal characterisations of how certain properties and functions
can appear at some scale while not being well defined at some other. The idea of emergence appears
in several fields [103] and while in some cases it could serve for a definition of individuality that is
relevant for agents [73, 74, 104, 75, 105], it doesn’t necessarily speak to individuality as induced by the
relation between an agent and its environment, in the way we phrased individuality in Section 3 for
coupled systems. On the other hand, one could interpret emergence to be more closely aligned to the
prediction-based methods used to describe normativity in Section 4, assuming that different kinds
of coarse-grainings necessary to define some form of emergence can be derived from objectives that
describe the predictive power of some meso or macro scale of a system (by assuming, or not, some
level of supervenience) [104, 75, 105]. This exploration is however left to future work.

7. Conclusion

In this work, we started from the standard definition of life provided by NASA, “a self-sustaining
chemical system capable of undergoing Darwinian evolution” [3] and sought to explore how the first
half of this definition, “a self-sustaining chemical system”, can be abstracted and mathematically
formalised in the study of life as it could be, ALife, and other related fields. We suggested the study of
agents as a step in this direction, and initially operationalised agents as goal-directed systems acting
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in an environment. Building on a conceptual framework that identifies individuality, normativity or
goal-directedness, and interactional asymmetry as key requirements of a theory of agents, we then
analysed and reframed different mathematical approaches under a shared formal notation, enabling a
more direct comparison of different proposals, their strengths and possible missing parts. We then
saw how adopting an as-if stance on agency resolves a few conceptual tensions and reveals a deep
link between individuality and normativity: an agent’s identity strongly depends on its goal-directed
behaviour and vice-versa, a relation shown so far formally for a specific class of systems but likely
to generalise. Within this as-if perspective, actions can be interpreted as produced by interventions
that capture the causal asymmetry between agent and environment. This perspective allows us to
evade questions about who or what, if not the agent, ought to formally implement interventions in
a more ontologically committed interpretation of actions in the language causal reasoning. Overall,
this synthesis exposes complementary strengths and gaps among existing frameworks, discussing
mathematical and philosophical perspectives of agency and outlining a path toward an integrated,
mathematically explicit theory of agents based on a common conceptual framing.
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