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Abstract—The internal model principle, originally proposed in
the theory of control of linear systems, nowadays represents a
more general class of results in control theory and cybernetics.
The central claim of these results is that, under suitable assump-
tions, if a system (a controller) can regulate against a class of
external inputs (from the environment), it is because the system
contains a model of the system causing these inputs, which can
be used to generate signals counteracting them. Similar claims
on the role of internal models appear also in cognitive science,
especially in modern Bayesian treatments of cognitive agents,
often suggesting that a system (a human subject, or some other
agent) models its environment to adapt against disturbances and
perform goal-directed behaviour. It is however unclear whether
the Bayesian internal models discussed in cognitive science bear
any formal relation to the internal models invoked in standard
treatments of control theory. Here, we first review the internal
model principle and present a precise formulation of it using
concepts inspired by categorical systems theory. This leads to a
formal definition of “model” generalising its use in the internal
model principle. Although this notion of model is not a priori
related to the notion of Bayesian reasoning, we show that it can
be seen as a special case of possibilistic Bayesian filtering. This
result is based on a recent line of work formalising, using Markov
categories, a notion of interpretation, describing when a system
can be interpreted as performing Bayesian filtering on an outside
world in a consistent way.

Index Terms—Cybernetics, Control Theory, Internal Model
Principle, Interpretation Map, Bayesian Inference, Bayesian Fil-
tering.

I. INTRODUCTION

A classic slogan in cybernetics states that “every good
regulator of a system must be a model of that system” [1].
This idea, based on the “law of requisite variety” [2] also
underpins major developments in fields heavily influenced by
cybernetics, such as control theory, biology, artificial intelli-
gence and cognitive science.

In control theory specifically, the “internal model principle”
(IMP) [3] refers to a general principle (a “mold”, or a guide
for a class of results as argued by [4], [5]) that formalises
claims made in [1], [2] by defining sufficient conditions for the
existence of internal models of the environment in controllers
for certain classes of regulation problems.

In biology, internal models are usually invoked based on
the IMP and form the basis of the modern understanding of
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homeostasis and (perfect) adaptation in living organisms at all
scales, including microorganisms such as bacteria [6]–[8].

In artificial intelligence, internal models often appear un-
der the name of world models [9]–[11], and underlie a re-
search programme with applications to reinforcement learning,
robotics and deep learning, focusing on learning how to
represent hidden properties of the environment [12].

In cognitive science and neuroscience, internal models
are broadly thought to constitute the computational basis of
perception, motor control and high-level cognitive reason-
ing [13]–[16], although there is no shortage of debate about
this, e.g. [17]–[20]. In the context of neuroscience, internal
models are often, though by no means universally, presented
under a Bayesian framework. According to the Bayesian view,
brains or agents as whole systems, can be thought of as
Bayesian reasoners and their cognitive processes as instances
of Bayesian inference [21]–[24].

While the label “internal model,” or just “model” is used
across different disciplines, it is unclear whether it always
refers to the same underlying formal concept. If cognitive
scientists propose internal models for the study of cognition,
are they referring to the same kind of mathematical objects as
control theorists working with internal models for regulation
problems? We do not fully answer these questions here, but
take some steps towards answering them.

To do so, we structure this work in two main parts. In the
first part (Section II), we present the IMP developed by [25]–
[29] using concepts inspired by categorical systems theory, a
mathematical formalisation of systems and their interactions
based on category theory [30]–[32]. We take particular care of
spelling out the assumptions that underpin work on the internal
model principle, and along the way, we provide a definition of
a “model”. This definition is inspired by and compatible with
the one found in the IMP literature for closed and autonomous
systems, but also applies to systems with inputs. We then
focus, in the remainder of the paper, on the case of autonomous
systems, as treated by the standard IMP, and highlight one of
the IMP’s central aspects. Its assumptions ensure that although
the controller isn’t autonomous, its dynamics are effectively
described by an autonomous system that we call the “attracting
controller”. This autonomous system is the one with a model
of the environment.

In the second part, we first introduce the notion of a
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Bayesian filtering interpretation (Section III). This formally
captures what it means for a system to support an interpretation
as a Bayesian reasoner, and can also be considered as a
formalisation of “model”, albeit in a rather different sense than
in the IMP. Bayesian filtering interpretations were formulated
in previous work [33] in the setting of Markov categories,
a recent approach to synthetic probability theory [34], [35]
situated in the tradition of applied category theory, and related
to ideas on process theories [36], [37] and the graphical
language of string diagrams. Here we work in a particular
Markov category, Rel+ (of sets and total relations), that cap-
tures possibilistic rather than probabilistic non-determinism.

In Section IV we then show that, for autonomous systems,
whenever there is an internal model in the IMP sense, there is
also a corresponding Bayesian filtering interpretation. To the
best of our knowledge, this is the first result that establishes a
formal connection between the concept of (internal) “model”
used in the IMP, and the Bayesian inference/filtering literature.
This Bayesian filtering interpretation is however of a particular
kind. On the one hand it corresponds to a simplistic case of
Bayesian filtering in which the system doing filtering never
makes use of its inputs in any non-trivial way, meaning that
although the prior changes over time in order to track the
changing hidden state, the posterior for a given prior does
not depend on the observation or input. Because of this, we
consider Bayesian filtering interpretations to be a more general
notion of model than the one used in the IMP. On the other
hand, the Bayesian filtering interpretation employs a kind of
approximation of the modelled system and not the modelled
system directly.

II. THE INTERNAL MODEL PRINCIPLE

The IMP appears in the control theory literature as a
series of different results that include, for instance, proposals
using linear [3] and nonlinear [38] systems, and a focus on
geometric [3], [39] or algebraic approaches [25]. The latter
are of particular interest in this work. The algebraic approach
proposed by Wonham [25], later refined in [26]–[28], paves
the road for a more abstract version of the IMP, capturing its
core assumptions for a broad class of system, without requiring
explicit assumptions regarding the geometry (or any geometry)
of a system, see for instance [29], [40].

In this section, we provide a self-contained account and
critique of [26]–[28]’s IMP. In the remainder of this work,
unless otherwise stated, “IMP” will refer to the one described
in this section. We start by first giving a definition of system
that will be used throughout this work.

A. Systems and their maps
For the sake of simplicity, we will be working with discrete

(in both time and space) dynamical systems, focusing on
sets and functions. We note however that, since we adopt a
structural approach to our description, most of what follows
can be easily generalised to dynamical systems of other
kinds (e.g. smooth dynamical systems, as in [26]–[28], or
topological/stochastic dynamical systems).1

1Indeed, all open dynamical systems as above fit in a common structural
description, as shown in [30], [31].

Definition II.1. A system (or more precisely, a fully observ-
able system) X is comprised of a set X of states, a set I of
inputs (or observations), and an update (or dynamics) function:

updX : X × I → X, (1)

The pair
(
I
X

)
is collectively referred to as the interface of the

system, and we write X : Sys
(
I
X

)
to mean X has such an

interface.

It might seem odd that the interface of a system includes
its state space (as well as its inputs), however this is because
we assume that the state space is exposed for other systems
to observe. Unless otherwise stated, we thus note that all of
our uses of “system” in this work will specifically refer to
the definition given above, meaning we will be dealing with
fully observable systems. Some of these systems will also have
trivial inputs, meaning I is a singleton 1 = {∗}. We’ll call such
systems autonomous.

Remark II.2. We will denote a system X in a sans-serif font,
and its state space X with the same letter but in regular font.
A point we want to make in this section is that it is crucial to
distinguish the two.

Next we consider maps between systems. This definition
takes into account the fact that a system is comprised not only
of a state space, but also of an interface and dynamics on its
states. So a map of systems is given by maps between their
respective inputs and states which preserves their dynamics.
Here and in the following we use the diagrammatic order for
composition of functions i.e. if f : X → Y and g : Y → Z
we write (f # g) : X → Z for the composite function where
(f # g)(x) := g(f(x)).

Definition II.3 (Map of systems). Let X : Sys
(
I
X

)
and

X′ : Sys
(
I′

X′

)
be systems. A map of systems f : X → X′

is comprised of two parts:
1) a map on states, given by a function

fs : X → X ′, (2)

2) a map on inputs, given by a function

fi : X × I → I ′, (3)

such that the following diagram commutes:

X × I X ′ × I ′

X X ′

(πX # fs,fi)

fs

updX updX′ (4)

meaning that, for every x ∈ X, i ∈ I , the following equation
is satisfied:

fs(updX(x, i)) = updX′(fs(x), fi(x, i)), (5)

It’s worth commenting on the map on inputs, since one
might expect it to have type I → I ′ rather than the more
general X× I → I ′. This latter choice comes from the notion
of chart in categorical systems theory [31], and allows a more
general class of maps between systems. We make use of this
in Remark II.7, since the maps described there would not exist
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if we used the more restrictive definition. When X and X′ have
the same set of inputs, a map between them can be given by
just specifying the map on states.

Construction II.4. In what follows, we will need to
compose maps of systems, so we explain here how that
happens. Given maps f : X → X′ and g : X′ → X′′, where
X : Sys

(
I
X

)
, X′ : Sys

(
I′

X′

)
and X′′ : Sys

(
I′′

X′′

)
, their compo-

sition f # g : X → X′′ is given on states by the composition of
the maps on states:

(f # g)s = fs # gs, (6)

while on inputs (f # g)i : X × I → I ′′ is defined as follows:

(f # g)i(x, i) = gi(fs(x), fi(x, i)). (7)

The notions of subsystem of a system and attracting sub-
system will be crucial to define the regulation condition for
the IMP, hence we introduce them here:

Definition II.5 (Subsystem). A subsystem of X is a forward-
invariant subset of X together with updates restricted to the
subset, thus a map of systems γ : X′ → X given on states
by an inclusion γs : X ′ → X and on inputs by projection
γi = πI : X × I → I .

Forward-invariant here means that if the state is in X ′ then
the next state will also be in X ′, no matter what observation
is received. The dynamics of a subsystem are induced by
the dynamics of its parent system. In fact one can say that
a subsystem of X is given by a subset X ′ ⊆ X such that
updX(x

′, i) ∈ X ′ for all x′ ∈ X ′ and i ∈ I . The update
function of the subsystem is then just updX restricted to X ′×I .

Note that the term “subsystem” is often used to mean a
component, or a part, of a system. This is not the sense in
which we use the term here. For example, the controller is
not a subsystem of the full system, as defined below.

Definition II.6 (Attracting subsystem). An attracting subsys-
tem for X is a non-empty subsystem X∗ → X such that, for
each x ∈ X , there exists n ∈ N such that updtX(x, ī) ∈ X∗

for all t ≥ n and ī ∈ It.

Notice that we do not assume X∗ is the smallest subsystem
of X meeting this criterion. In part because of this, our
definition is rather more general than the usual definition of
attractor. For example, X∗ could be the basin of attraction of
a fixed point, or it could contain multiple distinct orbits.

B. The IMP assumptions

Having fixed what we mean by “systems”, let us define the
systems of interest for the IMP. The following is a typical
control theoretic setup, and is used in particular in the work
by Hepburn and Wonham [26]–[28], where it is presented
a bit differently. Throughout this section we introduce the
assumptions used by Hepburn and Wonham to derive the
internal model principle. We note in advance that one of them,
Assumption 4, seems to us rather difficult to motivate. We
begin with the following:

Assumption 1 (Environment, plant, controller). The following
three components are so defined:

1) the environment E : Sys
(
1
E

)
is an autonomous system

updE : E → E, (8)

2) the plant P : Sys
(
E×C
P

)
is a system

updP : P × E × C → P, (9)

3) the controller C : Sys
(
P
C

)
is a system

updC : C × P → C. (10)

The full system S : Sys
(

1
E×P×C

)
is the following composite

autonomous system:

updS : E × P × C −→E × P × C

(sE, sP, sC) 7−→(updE(sE), updP(sP, sE, sC),

updC(sC, sP)).

(11)

Let S = E × P ×C denote the state space of the full system
S.

We next look at the maps of systems that can be defined
between these components thanks to the definition of maps of
inputs in Definition II.3.

Remark II.7. There are maps of systems πE : S → E,
πP : S → P and πC : S → C induced by projecting out states
of S:

S × 1 E × 1

S E

(πE ,id1)

updS updE

πE

S × 1 C × P

S C

(πC ,πP )

updS updC

πC

S P × E × C

S P

(πP ,πE×C)

updS updP

πP

(12)

In this setting, the environment’s role is to produce unde-
sirable signals, or disturbances, the controller and plant must
adapt to. The plant-controller subsystem has no control over it,
since E is an autonomous system, i.e. it does not receive inputs
from controller, plant or any other system. In [25] Wonham
calls the environment a “convenient fiction” which can be
used as a placeholder for disturbances that C is designed to
compensate. We will comment more on this point later.

The controller’s job is to regulate plant and environment,
according to some notion of regulation. Formally, we define:

Definition II.8 (Regulation problem). A regulation problem
(or reguland [1]) is a triple (E,P, K̃ ⊆ E × P ).

K̃ is a set of target states (also known as goals, or
references). This set specifies what the controller is supposed
to achieve. We define it as a subset of E ×P rather than just
P , which means that the desired states of the plant can also
depend on the state of the environment. We then define the
set K = C × K̃ of states of the complete system in which
the plant-environment components are in a target state. By
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slight abuse of terminology, we also refer to the elements of
K as target states. A regulation problem is thus the complete
collection of things we need to formulate the IMP. From now
on, the rest of the assumptions will be properties we impose
on these things.

We should note at point that the dynamics of S might exit
and enter target states K. Thus, in order to say that C actually
regulates S, we need to make assumptions regarding the way
K fits in the dynamics of S:

Assumption 2 (Regulation condition). C solves its regulation
problem, meaning there exists an attracting subsystem (Defi-
nition II.6) S∗ → S such that, on states, S∗ ⊆ K.

The idea of this assumption is that no matter what state
the whole system starts in, there eventually will be a time at
which the environment-plant system is in K and it will remain
there indefinitely. The only non-trivial condition imposed
by Assumption 2 is that S∗ is non-empty: in fact there is
always a maximal subsystem of S contained in K (just take
the union of all such subsystems), but it might possibly be
empty. In particular, C might be small compared to the rest of
S. Therefore, the next assumptions buy some extra structure
so that we can ultimately find a way to compare C and E.

Looking again at Assumption 2 we see that, even though
K contains all states of C, this might not be true anymore for
S∗. We can define the set of attracting control states as

C∗ := {sC ∈ C | ∃sE ∈ E, sP ∈ P, (sE, sP, sC) ∈ S∗}.

It is obtained along with a surjection πC∗ : S∗ → C∗ by taking
the image of S∗ under the projection map πC : S → C:

S∗ C∗

S CπC

πC∗

(13)

We would like to show next that there is a system with state-
space C∗ that tracks E (or a subsystem of E whose states are
contained in K), but (1) C∗ isn’t necessarily forward-invariant
as a subset of C and (2) E is autonomous, while C isn’t.

To resolve this issue, following [25]–[28], we assume that
the controller C operates in a particular way. When the system
is outside the target states, the controller is in a closed loop
regime in which its evolution depends on the state of the plant,
by virtue of the inputs received from it. It is however allowed
to switch to an open loop strategy, and in particular when
the system is in a target state, we assume that the controller
operates purely in an open loop setting, in which its outputs
and state changes don’t depend on the state of the plant.
Plenty of control strategies fall under this assumption, namely
those that employ error feedback: the controller measures how
far the plant-environment system is from a target state, and
counteracts accordingly, so that when inside the target state the
controller essentially operates in an open loop regime. Still,
it’s important to remember that, while this assumption plays an
important role in certain areas of control theory, for instance
in the “disturbance decoupling problem” [41], and cognitive
science, where it corresponds to the idea of “decouplability”
or “detachability” [42], it rules out controllers that use closed

loop feedback to maintain a target regime; plenty of these also
exist.

Assumption 3 (Error feedback structure). C∗ supports an
autonomous dynamics updC∗ : C∗ → C∗, thus defining a
system C∗ : Sys

(
1
C∗

)
, that we call attracting controller, and

making πC∗ a full-fledged map of systems:

πC∗ : S∗ C∗ (14)

We now give the following definition which we believe to
be novel, though in spirit very much like that proposed in [28]
as well as in [1].

Definition II.9 (Model). A model of a system X ∈ Sys
(
I
X

)
is:

• a system M ∈ Sys
(
J
M

)
(the archetype), and

• a map of systems (the model per se)

X M
µ

(15)

such that

1) its part on states µs : X →M is surjective, and
2) its part on inputs µi(x,−) : I → J is surjective for

each x ∈ X .

Often we will just say “M models X”, leaving µ implicit.
The idea of such a definition is that the map µ forgets
some of the complexity of the system X, which is mapped
(surjectively) into the simpler system M. It is also connected
to “coarse-grainings” [43], “variable aggregation” [44], “state
aggregation” [45], “lumpability” [46], “model reduction” [47],
“dynamical consistency” [48] or other similar concepts, and
reflected in standard ideas of “supervisory control” [40],
for readers already familiar with any of these. Importantly
however, this is not the same as any of the standard definitions
mentioned above since the map on inputs corresponds to a
chart [31] for fully observable systems, as alluded to in the
definition of maps of systems (Definition II.3): it is of the form
X × I → J and not simply I → J .

Having a model µ : X → M means that for each state
m ∈ M we have a set of states µ−1(m) ∈ X , called the
fibre of m and which represents a subset of elements of X
that are indistinguishable from the perspective of the simpler
system M as they all map to the same element m ∈M via the
surjective function µs. As m ∈ M varies along the function
updM, this variation is consistent with the variation described
by the function updX for each element x of the fibre µ−1(m)
of m. This will be further unpacked in Construction IV.1.

Remark II.10. When applied to autonomous systems, a model
reduces to the definition implicit in [27], [28]. It is implicit
there because it only appears in cases where X is either
the attracting full system S∗, or the attracting environment
E∗ defined below. It is also mixed with other assumptions,
particularly Assumption 4, which we believe are not strictly
necessary (and potentially problematic) for a notion of model.
Our definition is also in terms of sets as in [29], [40] (rather



5

than in terms of manifolds as in [27], [28]), and corresponds
to a surjective map of states commuting with the dynamics:

X M

X M

updX

µs

µs

updM (16)

This is because the map on inputs of a model is necessarily
of the form X × 1 → 1 for autonomous systems, due to
the surjectivity condition. Another consequence of this is
that systems that model autonomous systems must also be
autonomous.

Remark II.11. Like any good definition, Definition II.9
admits a trivial instance. A trivial model is one where µ :
X → M is a product projection, which means there exists a
system F ∈ Sys

(
H
F

)
such that the state space and inputs of the

system X factor as X =M ×F and I = J ×H respectively,
and its dynamics decompose in that of M and F:

updX((m, f), (j, h)) = (updM(m, j), updF(f, h)). (17)

Thus, in a trivial model, knowledge of M does not afford
knowledge about the rest of X, because M and F are uncou-
pled.

We stress that what makes a trivial model trivial is Eq. (17),
rather than µs and, fibrewise, µi, being product projections.
As an instructive and relevant example of this fact, observe
that πE : S → E from Remark II.7 satisfies the definition of
model and it is a product projection on states, but it is not
a trivial model. It thus means that we could meaningfully
interpret E as describing a coarse-grained version of S: even if
a state of E always represents all possible states of the plant-
controller component (so it is hardly an informative belief),
the dynamics is non-trivial since knowing the state of E does
constrain the possible evolution of S. In particular, πE does
not satisfy Eq. (17) unless P does not make use of its input
from the environment.

To obtain what Hepburn and Wonham called the IMP, we
need another assumption. It is however quite strong, and hard
to motivate in practice as far as we can tell. To state it, we
first introduce the following lemma.

Lemma II.12. Let γ : X∗ → X be an attracting system for X,
and let p : X → Y be a map of autonomous systems surjective
on states. Then the image of X∗ under p defines an attracting
system for Y.

Proof. Let y ∈ Y. Since the map on states ps is surjective,
there is an x ∈ X such that ps(x) = y. By assumption, X∗

is an attracting system so there exists an n(x) ∈ N such that
updmX (x) ∈ X∗ for all m ≥ n(x). Now since ps commutes with
updX and updY, ps(X∗) ∋ ps(upd

m
X (x)) = updmY (ps(x)) =

updmY (y), thus proving that p(X∗) is an attracting system for
Y.

The projection πE : S → E described in Remark II.7 satisfies
the hypotheses of Lemma II.12, meaning the attracting full
system S∗ induces an analogous global attractor E∗ in E
(again, obtained by restricting E to those states which are

part of at least one state of S∗). We will call the system
E∗ the attracting environment, by analogy with the attracting
controller in Assumption 3. The next assumption is arguably
the core of the IMP as described in [26]–[28].

Assumption 4. There is an isomorphism of systems S∗ ∼= E∗,
meaning that for each environment state sE ∈ E∗, there is
exactly one s ∈ S∗ such that πE(s) = sE.

This assumption can be used to obtain a map of systems
between the attracting controller C∗ and the attracting envi-
ronment E∗, which leads to a complete reformulation of [28]:

Theorem II.13 (Internal Model Principle (attracting environ-
ment E∗)). Let S be a system subject to Assumptions 1 to 4.
Then C∗ models the attracting environment E∗ via the dashed
map below:2

E∗ C∗

S∗

ν

∼
Assumption 4

πC∗

Assumption 3

(18)

In the next section, we will link this notion of model to
that of Bayesian interpretation put forward by [33], [49]. This
is perhaps surprising, because models in Bayesian statistics
and models according to definition Definition II.9 are quite
different things and it’s not a priori obvious that they would
be connected at all.

III. BAYESIAN UPDATES AND INTERPRETATIONS

The notion of interpretation map was introduced in [33] as a
map between the state of a system and probability distributions
on the states of the external world describing the former’s
beliefs about the latter. The concept has since then been
developed further in a category theory context in [50]. The goal
was to understand what it means to interpret a physical system
as performing Bayesian inference; that is, what properties must
a physical system have in order to be able to make the claim
that it has a Bayesian prior over some hidden variable? This
question, and the approach taken to it, is similar in spirit
to [51], with the main difference being the focus on Bayesian
reasoning rather than computation.

This notion has also been applied to partially observable
Markov decision processes [49], sharing some mathematical
background with the state-space control theoretic approach
behind the internal model principle. In this section we briefly
summarise some of the results in [33], [49] that will help
us later establish connections between the internal model
principle and Bayesian reasoning ideas.

A. Markov categories

Markov categories are a synthetic approach to probability
theory and formalise the compositional structure of non-
deterministic processes that behave like Markov kernels. The
canonical reference for Markov categories is [35]. We begin
with the definition of a category.

Definition III.1 (Category). A category C consists of:

2Such a composite is defined by Construction II.4.
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• a class of objects, ob(C), e.g. A,B,C, . . . ,
• a class of maps, arrows or morphisms, arrow(C) (these

three terms are interchangeable),
• for each arrow in arrow(C), a source and a target, which

are objects, i.e. elements of ob(C), if an arrow f has
source A and target B then we often write it as f : A→
B, and we say that A→ B is the arrow’s type,

• for each object of ob(C), an identity morphism idA : A→
A,

• a binary operation # on arrows called the composition
rule, such that given morphisms f : A→ B and g : B →
C, their composite f # g is an arrow with type A → C;
composition is defined when (and only when) the target
of one arrow equals the source of another, and must obey
the following laws:

– associativity: given morphisms f : A → B, g :
B → C and h : C → D, we must have f #(g #h) =
(f # g) #h,

– left and right unit laws: for every pair of objects
A,B and morphism f : A → B, we must have
idA # f = f = f # idB .

Next we introduce a graphical notation, string diagrams,
for a special class of categories with extra structure, known as
symmetric monoidal categories, that will be used throughout
this work. We give an abridged definition that gives enough
information to understand the rest of the work, skipping over
some important details (the so-called coherence laws) that are
needed for the graphical language to be formally valid [52].
For a concise formal treatment of symmetric monoidal cate-
gories and their graphical language, a good reference is [53];
see also [54] for more on string diagrams and [37] for a much
more comprehensive beginner-friendly introduction.

Definition III.2 (Symmetric monoidal category). A symmetric
monoidal category (also known as a process theory [37]) is a
category C with the following additional structure:

• objects as wires, or strings, A,B,C, . . .
A B, C, , . . . (19)

• morphisms as boxes, f : A → B, g : B → C, h : C →
D, . . . , converting objects to new objects and forming
processes (combinations of objects and morphisms to
track their changes)

, , , . . .A B
f

B Cg C D
h

(20)
• composition appears in two forms, sequential and paral-

lel; sequential composition, denoted by #, corresponds to
the connection of wires with the appropriate type (A’s
with A’s, B’s with B’s, etc.) such that

A
f

B Cg A C
f # g= (21)

while parallel composition, denoted by ⊗, is simply
depicted as

=

A B
f

A⊗ C B ⊗D
f ⊗ h

C D
h

(22)

The composition operations must obey:

• associativity, for sequential composition given by (equal-
ities) f #(g #h) = (f # g) #h = f # g #h and for parallel
composition by (isomorphism) f⊗(g⊗h) ∼= (f⊗g)⊗h ∼=
f ⊗ g ⊗ h,

• identity, for sequential composition in the form of an
identity box (usually not drawn, as on the right hand side
below)

A A
idA

A
= (23)

and for parallel composition in the form of a distinguished
wire I , often drawn as no wire,

I = (24)

such that for every object A ∈ C, I ⊗ A ∼= A ∼= A ⊗ I ,
i.e. in string diagrammatic terms, any wire can be seen
as having infinitely many not-drawn identity wires in
parallel,

• and symmetry, in the form of a morphism σA,B : A ⊗
B → B ⊗A, drawn as two wires crossing:

A

A

B

B (25)

such that σA,B #σB,A = idA⊗B .

The isomorphisms witnessing associativity, unitality and sym-
metry satisfy coherence laws [52, Definition 6.1.1], as men-
tioned before, will not be of concern here. We will however
state the following properties in the graphical notation, as they
will be regularly used in string diagrams manipulations later
on:

• interchange law

A B
f

= =
C D

h

A B
f

C D
h

A B
f

C D
h

(26)
• naturality of the swap map

A B
f

C D
h

D

B
=

A

C A B
f

C D
h

(27)

Definition III.3 (Markov category). Markov categories (or
affine cd-categories [34]) are symmetric monoidal categories
where every object is equipped with extra structure that
reproduces, synthetically, the algebra of non-deterministic pro-
cesses resembling (normalised) Markov kernels. This structure
includes copy and delete operations doing what their names
explicitly suggest: the former creates two copies of its input,
while the latter deletes its input:

A

A

A

A, (28)
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Copy and delete obey the following laws (for readability,
strings aren’t labelled here, but imagine them all having the
same label):

=
=

= =

,

(29)

For extra clarity, we adopt the convention introduced by [33]
to denote deterministic maps as boxes:

f
A B (30)

and keep general (possibly non-deterministic) ones as boxes
with a curved right edge:

A B
f (31)

In text, we write the type of a deterministic morphism as f :
A → B, whereas for a general (possibly non-deterministic)
morphism we use the special notation f : A •→ B.

The defining property of deterministic maps in Markov
categories is

f
A B A

f

f

B

B
=

B

B

A

A
(32)

which is sometimes called the naturality of copy. Naturality
doesn’t apply to non-deterministic maps, intuitively because
copying the result of a die roll is not the same as rolling
two dice. On the other hand, all maps in a Markov category
satisfy the normalisation law, or naturality of delete, stating
that mapping an input to an output and then deleting the
output, is the same as deleting the input:

=A AB
f (33)

For further technical details, and discussions, we refer the
reader to [35], [55].

Example III.4 (FinStoch [35]). For a given set Y , denote by
D(Y ) the set of all finitely-supported probability distributions
over it. There is a Markov category FinStoch whose objects
are finite sets and whose morphisms from X to Y , X •→ Y ,
called Markov kernels, are defined as functions X → D(Y ).
For a Markov kernel f : X •→ Y we write f(y | x) for
f(x)(y), the probability assigned to y when the kernel is given
x as input.

Sequential composition of Markov kernels f : X •→ Y ,
g : Y •→ Z is given by the Markov kernel so defined (i.e. the
Chapman–Kolmogorov equation):

f # g : X •→ Z

(f # g)(z | x) :=
∑
y∈Y

g(z | y)f(y | x) (34)

while parallel composition is, on objects, the Cartesian prod-
uct of sets X ⊗ Y := X × Y , and for morphisms f : X •→ Y
and f ′ :M •→ Y ′ given by the Markov kernel so defined:

f ⊗ f ′ : X ×X ′ •→ Y × Y ′

(f ⊗ f ′)(y, y′ | x, x′) := f(y | x)f ′(y′ | x′). (35)

The unit for parallel composition is the singleton I = 1 =
{∗}. The copy and delete morphisms for a set X are given,
respectively, by the Markov kernel ∆X : X → X×X mapping
x ∈ X to the Dirac distribution δ(x,x), and the unique map
delX : X → 1, mapping x ∈ X to the only normalised
probability distribution that exists over {∗}.

Deterministic morphisms in this Markov category are those
that are indeed deterministic, i.e. they map every element
of their domain to a Dirac distribution. In other words, the
deterministic maps of FinStoch are all and only the usual
set-theoretic functions, see [35] for details.

Example III.5 (Rel+ (or SetMulti) [35], [56]). For a set
Y , denote by P+(Y ) the set of all non-empty subsets of Y .
There is a Markov category Rel+ whose objects are sets and
whose morphisms from X to Y are functions X → P+(Y ),
corresponding to left-total relations. Sequential composition
of left-total relations f : X •→ Y , g : Y •→ Z is given by the
left-total relation so defined:

f # g : X −→ P+(Z)

x 7−→ {z ∈ Z | ∃y ∈ Y, y ∈ f(x) and z ∈ g(y)},
(36)

while parallel composition is, on objects, the Cartesian prod-
uct of sets X ⊗ Y := X × Y , and for morphisms f : X •→ Y
and f ′ :M •→ Y ′ given by the left-total relation so defined:

f ⊗ f ′ : X ×M −→P+(Y × Y ′)

(x, x′) 7−→{(y, y′) ∈ Y × Y ′ |
y ∈ f(x) and y′ ∈ f ′(x′)}. (37)

The unit for parallel composition is the singleton I = 1 = {∗}.
The copy and delete morphisms for a set X are given,

respectively, by the left-total relation ∆X : X → X × X
mapping x ∈ X to the singleton {(x, x)}, and the unique
map delX : X → P+(1).

Deterministic morphisms in this Markov category are those
that map every element of their domain to a singleton. In
other words, the deterministic maps of Rel+ are all and only
the usual set-theoretic functions [35].

The morphisms in Rel+ can be seen as possibilistic Markov
kernels. For each element in the codomain we specify a set of
possible elements of the domain that it might map to, but we
don’t assign probabilities to these possibilities. Possibilistic
representations of uncertainty are less common than proba-
bilistic ones. Nonetheless they are well established and have a
long history in different fields, including control theory [57]–
[61], artificial intelligence [62] and automata theory [63].
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B. Bayesian reasoning and interpretations in Markov cate-
gories

We now introduce the main ideas involved in the notion of
Bayesian interpretations. To aid intuition, we refer to maps
of type p : I •→ X for any object X as distributions and
to deterministic maps x : I → X of that type as elements
of X . We also consider maps ψ : Θ •→ X to correspond to
parametrised families of distributions (also called “channels”
in [34], [64]), with each element θ : I → Θ a parameter
determining a distribution ψ(X | θ) or ψ(θ) over X .

Furthermore, given a map f : X •→ Y and an element
x : I → Y we call x # f : I •→ Y the distribution over Y
assigned to the element x ∈ X by f . We write it as f(x)
or f(Y | x). In FinStoch this terminology and the notation
coincide with its common usage in probability theory.

Next we recall the definitions of Bayesian inversion and
conjugate prior for Markov categories with conditionals given,
e.g. in [35], [64]. We then generalise these two concepts, which
brings us closer to the definition of a Bayesian interpretation.

Definition III.6 (Bayesian inversion). In a Markov category,
a Bayesian inversion [34] of a map f : X •→ Y with respect
to a distribution p : I •→ X is a map f† : Y •→ X satisfying
the following equation:

f
X

Y

X

f†

Y

X

Y

f
X

p

p

=

(38)

In a general Markov category with f and p as above, a
Bayesian inverse f† is not guaranteed to exist. However, many
Markov of interest have a property known as “having (all)
conditionals” [35, Definition 11.5], which guarantees that they
always exist, for every f and p. This is the case in both
FinStoch and Rel+. However, although they always exist in
our categories of interest, Bayesian inverses are not generally
unique, meaning that for given p and f there might be multiple
morphisms f† satisfying Eq. (38). We discuss the reasons for
this shortly.

To get a more concrete feeling for Bayesian inverses, we can
examine the form Eq. (38) takes when our Markov category
is FinStoch, where it corresponds to the equation

p(x)f(y | x) = f(y | p(x))f†(x | y)

=
∑
x′∈X

p(x′)f(y | x′)f†(x | y), (39)

from which we can derive the standard Bayes rule by dividing
by f(y | p(x)), assuming it’s positive (f(y | p(x)) > 0):

f†(x | y) = p(x)f(y | x)
f(y | p(x))

=
p(x)f(y | x)∑

x′∈X p(x′)f(y | x′)
. (40)

As mentioned, the Bayesian inverse f† is generally not unique.
In FinStoch this is because Eq. (39) doesn’t constrain the
value of f†(x | y) in cases where f(y | p(x)) = 0.

Bayesian inversions can be used to inspire a notion of
updating of distributions over a (hidden) variable in response
to observations [65]. For this, we consider Y as observations
generated from hidden variable X by f : X •→ Y (often
called a statistical model in a probabilistic context, including
for instance in FinStoch), the distribution p : I •→ X above
as a prior distribution before an observation, and the map
f† : Y •→ X as assigning new, posterior distributions to the
observations Y generated via f . In the case of FinStoch, the
map f† can be seen as multiplying the prior by the likelihood
(i.e. the values of f(y | x) for the given data y) and then
dividing by the evidence

∑
x′∈X p(x′)f(y | x′) to obtain the

posterior.
It is common to refer to distributions that are updated

according to this process as (Bayesian) beliefs, and to the
process itself as (Bayesian) belief updating.

In some cases, in place of the prior p : I •→ X we might
want a parametrised family of priors ψ : Θ •→ X . The idea
is that the prior is assumed to come from some family of
distributions, say for instance Gaussians, and so we consider
one prior for each value of the parameters Θ. In this case, the
Bayesian inverse f† must depend on the parameter as well,
because in general the Bayesian inverse depends on the prior.
This gives rise to the following definition.

Definition III.7. In a Markov category, we say that a map
f† : Y ⊗ Θ •→ X is a Bayesian inversion of a parametrised
family f : Θ •→ X if

f
X

Y

X

f†

Y

X

Y

f
X

ψ
Θ

ψ
Θ

=

(41)

The next concept, called a conjugate prior, expresses an
important property that such a parametrised Bayesian inverse
might have, namely that it factors through the original family
of distributions ψ. This is of particular importance to us
because the map c below can be seen as explicitly implement-
ing the belief update, by updating the parameters such that
the prior’s parameter is updated to the posterior’s parameter.
Conjugate priors were first expressed in string diagrams in this
form in [64].

Definition III.8 (Conjugate prior for Bayesian inference). We
call ψ a conjugate prior [64] to f : X •→ Y if there exists a
deterministic map c : Y ⊗Θ → Θ that satisfies the following:

f
X

Y

X
ψ

Θ

ψ

X

Y

X
ψ

Θ

c

f
Y

=

Θ

(42)

Note that the map c #ψ is a Bayesian inverse of f with
respect to ψ, in the sense of Definition III.7. In Bayesian
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statistics, θ ∈ Θ is sometimes called a hyperparameter and
x ∈ X a parameter, but we will generally avoid this usage.

If we have a conjugate prior ψ : Θ •→ X to f : X •→ Y ,
then every parameter θ : I → Θ determines a Bayesian
inversion ψ(c(−, θ)) : Y •→ X of f : X •→ Y for
p(θ) [64, Theorem 6.3]. The role of c is to turn parameters of
prior distributions into parameters of posterior distributions by
taking into account observations generated by f according to
the prior ψ. In this way, the map c implements belief updating.
The usual informal notion of a prior being conjugate to f if
the posterior distribution is in the same family as the prior’s
is captured by having the map ψ appear twice: once when
mapping the initial parameter to the prior and again when
mapping the updated parameter to the posterior.

The version of belief updating introduced so far can be
seen as a version of Bayesian inference, which means that
the updated beliefs are about a constant hidden variable. To
see this, note that X gets copied, but never gets changed in
Eqs. (38), (41) and (42).

We need then a form of belief updating that corresponds
to Bayesian filtering, where the hidden variable also changes.
For this we can replace ∆X # f ⊗ idX : X •→ Y ⊗ X with
a map κ : X •→ X ⊗ Y that produces an observation Y
and may change X instead of just copying it. The analogue
of the Bayesian inversion (Definition III.6) with respect to a
distribution p : I •→ X is thus a map κ† : Y •→ X satisfying

κ
X

Y

X
p =

κ
X

Y

X
p

κ†
X

(43)

As with ordinary Bayesian inversions (Definition III.6), the
map κ† always exists in any Markov category with condi-
tionals, including thus FinStoch and Rel+. Note that setting
κ = ∆X # f ⊗ idX : X •→ Y ⊗X recovers Definition III.6.

In Bayesian filtering, the idea is that κ updates X and gen-
erates an observation Y . Similarly to the Bayesian inference
inversion, we can view p as a prior distribution before the
update of X and observation of Y , and κ† : Y •→ X as
assigning posterior distributions over the updated X to the
observations Y generated via κ. In FinStoch, this corresponds
to the following equation:

κ†(x | y) =
∑

x′∈X p(x′)κ(y, x | x′)∑
x′,x′′∈X p(x′)κ(y, x′′ | x′)

. (44)

The analogue to a conjugate prior to κ : X •→ X ⊗ Y in
the filtering case is then the following [33].

Definition III.9 (Conjugate prior for Bayesian filtering). We
call ψ a conjugate prior for Bayesian filtering to κ : X •→
X⊗Y if there exists a deterministic map c : Y ⊗Θ → Θ that

satisfies the following:

κ
X

Y

Xψ =

κ
X

Y

Xψ
Θ

Θ

ψ
X

c
Θ

(45)

The map c : Y ⊗ Θ → Θ maps parameters of prior
distributions over X to parameters of posterior distributions
over updated X (cf. Definition III.8 where X is instead fixed),
while taking into account observations generated by κ. In a
probabilistic context (including in FinStoch), the map κ where
X is updated is often called a hidden Markov model (or a
discrete state-space model), as opposed to the statistical model
f where X is fixed.

Reference [33] inverts this account, by starting with a map
c : Y ⊗ Θ → Θ and asking whether ψ and κ exist such that
Eq. (45) holds. This leads to the following definition.

Definition III.10 (Bayesian filtering interpretation [33]).
Given a deterministic map c : Y ⊗Θ → Θ, a Bayesian filtering
interpretation of c consists of a map ψ : Θ •→ X called the
interpretation map, together with a map κ : X •→ X ⊗ Y
called hidden Markov model, such that Eq. (45) holds. In this
context, Eq. (45) is called the consistency equation. A map
c : Y ⊗Θ → Θ together with an interpretation (ψ, κ) is called
a reasoner.

Technically, this is a slight simplification of the main defi-
nition of [33], since that paper allows c to be stochastic rather
than restricting it to be deterministic. This terminology stems
from the proposal to look at a the map c as a physical system,
whose states parametrise a Bayesian prior. The interpretation
map specifies this parametrisation. The consistency equation,
Eq. (45), guarantees that when the prior updates, it does so in
a way that is consistent with Bayesian filtering. We note also
that it is possible for the same map c to admit many different
Bayesian filtering interpretations.

Although the hidden Markov “model” κ is a different
kind of thing from the “model” µ in the internal model
principle, they are nevertheless related. In the next section
we will formally show this connection, providing a Bayesian
interpretation of the IMP and showing that interpretation maps
can be seen as a generalisation of models in Definition II.9.

IV. BAYESIAN FILTERING INTERPRETATIONS FROM
MODELS

To explain the connection between the notion of models
in Definition II.9 and Bayesian filtering interpretations, we
will now show that every model induces a Bayesian filter-
ing interpretation. This means, in turn, that in the setting
of Section II (under the hypotheses of Theorem II.13), the
attracting controller C∗ has (among possibly many others) an
interpretation involving the attracting environment E∗.

A. A possibilistic perspective on the IMP

The existence of power sets allows to turn models (Defini-
tion II.9) upside down, bringing us closer, as we shall briefly
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see, to the Bayesian filtering interpretation we are after. We
start from the following construction:

Construction IV.1. Given any surjective function f : A→ B
we can define a left-total relation f−1 : B → P+(A) landing
in the set P+(A) = P (A) \ {∅} of inhabited subsets of A:

f−1(b) := {a ∈ A | f(a) = b} for b ∈ B. (46)

For a given b ∈ B the subset f−1(b) is called the fibre of
f : A → B over b ∈ B. Both f : A → B and f−1 : B →
P+(A) can be seen as maps in Rel+ with types f : A → B
and f−1 : B •→ A. Composing these two yields a closure map
♢f : A •→ A, which closes an element a ∈ A by mapping it
to the set of all a′ ∈ A that generate the same image:

♢f (a) := (f−1 # f)(a) = {a′ ∈ A | f(a′) = f(a)}. (47)

Instantiated for the case of a model µ between autonomous
systems, with map of states µs : X → M , we can thus
interpret the objects constructed above as follows:

1) µ−1
s : M •→ X explicitly assigns to each state m ∈ M

the (inhabited) set of states of the system X it models.
We can think of this map as encoding a belief : µ−1

s (m)
is the belief (in the form of a set of possibilities)
someone using the model µ would have about the state
of the system X knowing just m.

2) ♢µs completes an element x ∈ X with all the other
states in X which can’t be distinguished from x by the
model µ, i.e. states equicredible with x.

We now state the following proposition, which will be used
in Theorem IV.4.

Proposition IV.2. For autonomous systems M and X, if M
models X with respect to the map of systems µ, the following
diagram commutes in Rel+:

M X

M X

µ−1
s•

updM updX

•

µ−1
s

•

(48)

where

updX := updX #♢µs . (49)

Proof. See Appendix A.

The function updX can be thought of as the dynamics of X
from the point of view of the map µ : X → M of a system M
modelling a system X. We will see shortly that the map µ−1

s

can be seen as an interpretation map and updX as the according
model of a Bayesian filtering interpretation. Before proceeding
with the main theorem, we briefly note the following as a
relevant example of Proposition IV.2.

Example IV.3. C∗ models E∗ with the map ν, according to
Theorem II.13. Thus Proposition IV.2 tells us that the following
diagram commutes:

C∗ E∗

C∗ E∗

ν−1
s•

updC∗ updE∗

•

ν−1
s

•

(50)

B. Models imply Bayesian filtering interpretations

Having obtained a possibilistic version of the IMP with
a notion of beliefs given by the map µ−1

s , we now show
how a model from Definition II.9 induces a Bayesian filtering
interpretation.

Theorem IV.4. Let M model X with µ : X → M, and assume
M and X are autonomous. Define c : X ⊗M →M as

M
M

X

:= M
M

X

updMc

(51)
and κ : X •→ X ⊗X as:

updX

X

XX
X

X

Xκ := (52)

Then κ is the hidden Markov model, and µ−1
s : M •→ X the

interpretation map of a Bayesian filtering interpretation of c,
i.e. we have:

updX
X X

µ−1
s

=M

X

updX
X X

µ−1
s

M

X

updM µ−1
s

XM

(53)

where the dashed lines show, informally, where we replaced
the definitions above in Eq. (45).

Proof. See Appendix B.

We highlight that the hidden Markov model κ in Theo-
rem IV.4 is possibilistic as opposed to probabilistic since we
are now in Rel+ rather than FinStoch or another Markov
category. This means, once again, that κ includes transitions
to sets of possible states without assigning numerical proba-
bilities, and is related to, among other, standard work on (non-
deterministic) labelled transition systems in automata theory,
as previously highlighted by, for instance, [33], [66].

We then note that updates updX constitute a kind of approx-
imation of updX. For any state x ∈ X , the deterministic result
of updates updX(x) is in fact replaced by an approximate,
possibilistic one: the set ♢µs(updX(x)) of all states that
are mapped to the same state µs(updX(x)) ∈ M (i.e. to
the fibre over µs(updX(x)).) In this sense, these states are
indistinguishable from the perspective of M.

This approximation is derived from the map on states µs

defined as a surjective function, see Eq. (47). If the map on
states was bijective, then updX = updX and beliefs would be
(trivially) concentrated on a single hidden state.

Our result also shows a rather simplistic form of Bayesian
filtering where observations are essentially ignored. This is to
be expected due to our definition of model in Definition II.9.
As mentioned in Remark II.10, models of autonomous systems
are also autonomous systems, and so M must be autonomous.
We thus only have an update function updM : M → M
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that doesn’t take any inputs to build a Bayesian filtering
interpretation.

Nonetheless, even while ignoring observations, the Bayesian
filtering interpretation is still consistent. This is possible since,
due to the approximation of updX, for any prior given by
µ−1
s :M •→ X , the observations do not affect the posterior.
There is another way in which Bayesian filtering inter-

pretations induced by models of autonomous systems are
special. Their beliefs are necessarily disjoint. This is a direct
consequence of the interpretation map being given by a right
inverse µ−1

s of the surjective map on states µs.

C. Applications to the Internal Model Principle
Recall that, in the IMP setting, the error feedback structure

of Assumption 3 let us define the attracting controller C∗

which is an autonomous system. Theorem II.13 then shows
that the attracting controller models the attracting environment
E∗. Theorem IV.4 tells us that we then also have the following
Bayesian filtering interpretation.

Example IV.5. Define c : E∗ ⊗ C∗ → C∗ as

C∗
C∗

E∗

:= C∗ C∗E∗

updC∗c

(54)
and κ : E∗ •→ E∗ ⊗ E∗ as:

updE∗

E∗

E∗E∗
E∗

E∗

E∗κ := (55)

Then κ is the hidden Markov model, and ν−1
s : C∗ •→ E∗ the

interpretation map of a Bayesian filtering interpretation of c,
i.e. we have:

updE∗
E∗ E∗

ν−1
s

=C∗

E∗

updE∗
E∗ E∗

ν−1
s

C∗

E∗

updC∗ ν−1
s

E∗C∗

(56)

This example explicitly shows the precise sense in which
one can understand a controller as modelling its environment
from a Bayesian perspective: under the IMP assumptions [25]–
[28], a model in the control theoretic sense described by
Definition II.9 admits a Bayesian filtering interpretation with
reasoner and (hidden Markov) model, as described by Defini-
tion III.10 following work by [33], [49], given above.

It also provides a clearer understanding of the statement
that the environment can be seen as a “convenient fiction by
which the designer may specify (or analyst describe) precisely
the class of tracking and disturbance rejection tasks which
the controlled system is to accomplish with zero (asymptotic)
error” [25], since the environment now just appears in Eq. (55)
as a special case of a full-fledged epistemic (see [50]) Bayesian
model κ for a reasoner, i.e. while it could in principle
capture properties of the physical world where the controller is
instantiated, it effectively only needs to obey the consistency
equation expressed by a Bayesian filtering interpretation.

V. CONCLUSIONS AND FUTURE WORK

The idea of “internal models” has appeared in a number
of different research fields, including control theory, biology,
artificial intelligence and cognitive science [1], [3], [6], [9],
[12], [14], [24]. These notions of internal models appeal,
at least on the surface, to a common intuition of a system
modelling another system in order to achieve a goal, e.g. a
reinforcement learning agent forming a model of its world to
maximise the sum of expected rewards, or a cognitive system
performing Bayesian inference on the hidden states generating
its observations with a model of the environment to perform a
certain task. It is however unclear in the literature whether this
goes beyond a simple analogy, and whether different notions
of internal models can be captured by a common mathematical
theory.

In this work we provided a first investigation on different
notions of “models”: one that is used in the control theoretic
context of the internal model principle [3]–[5], and one from
work on Bayesian interpretations [33], [49]. We formally
connected the two by showing that the notion of model for
autonomous systems in internal model principle as formulated
in [26]–[28] can be seen as a special case of the more general
Bayesian filtering interpretations proposed by [33], [49].

More specifically, Theorem IV.4 tells us that the definition
of a model used in the IMP literature, i.e. the special case of
our Definition II.9 for autonomous systems [25]–[28], [40],
induces a Bayesian filtering interpretation.

Moreover, it also tells us that the IMP definition of a
model is too restrictive from a Bayesian perspective: Bayesian
filtering interpretations are a more general formalisation of
what it means for a system to model another one. The Bayesian
filtering interpretations induced by the control-theoretic mod-
els are such that (1) the observations need not be taken into
account in order to update beliefs about the hidden states, and
(2) those beliefs are always disjoint.

However, the purpose of Bayesian filtering is to use ob-
servations to update beliefs. An explicit example of a system
with a non-trivial Bayesian filtering interpretation, solving a
partially observable Markov decision problem, can be found
in [49].

One direction for future work is to generalise Theorem IV.4
beyond autonomous systems, to general open systems. A
more challenging task may be to generalise the IMP itself
in particular in a way that doesn’t require Assumption 3 or
Assumption 4.

APPENDIX

A. Proof of Proposition IV.2

Proof. For this proof, we will use string diagrams as presented
in Section III to denote the arrows of the Markov category
Rel+ since all the maps we need are morphisms in that
category. First, we translate Definition II.9 for autonomous
systems (see Remark II.10) into string diagrams, obtaining:

updMupdX µs = µs
X X X MM M

(57)
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Then we note that in Rel+, we have that µ−1
s : M •→ X is a

right inverse of the surjective map µs : X →M , i.e.:

µ−1
s

µs =M X M M (58)

Furthermore, we also have the definition of the updates in-
duced by the Hepburn–Wonham IMP, updX, see Eq. (49):

µ−1
supdX := updX µs

X X MX X X

(59)
We then prove the following, starting from Eq. (57), we can

(i) post-compose both sides with µ−1
s , (ii) apply Eq. (59) on

the left hand side, (iii) pre-compose both sides with µ−1
s , and

then (iv) use the surjectivity of µs (Eq. (58)) to get:

=updX

=updX

=

updX µs =X X M µs updM
X M M

µ−1
s

X
µ−1
s

X

XX

M
µ−1
s

X M
µ−1
s

µs updM
X M M

µ−1
s

X

µs updM
X M M

µ−1
s

XX

updM
M

µ−1
s

X
updX

M
µ−1
s

X X

=⇒

=⇒

=⇒ M

(60)
which gives us the string diagram version of Eq. (48).

B. Proof of Theorem IV.4

Proof. For this proof, we will use string diagrams for the
Markov category Rel+. We start with the following equation,
derived from post-composing both sides of Eq. (60) with µ−1

s

and subsequently using the surjectivity property of µs, see
Eq. (58),

=updM
MM

updX
M

µ−1
s

X µs
X M

(61)
This tells us that the composite µ−1

s # updX #µs is determinis-
tic, and thus allows us to apply the definition of positivity for
Markov categories [35, Definition 11.22] (since every category
with conditionals, thus including Rel+ [67], is positive). We
briefly recall the definition of a positive Markov category.

Definition A.1. A Markov category C is positive if given two
morphisms f : A → B and g : B → C such that their
composite f # g is deterministic implies the following

A
f

B C

B

g A
f

B C

f
B

g
=

(62)

It then follows that, starting from Eq. (59), we can (i)
parallel compose both sides with idX and pre-compose both
sides with µ−1

s #∆X (where ∆X is the copy map for the system
X) (ii) apply the definition of positivity to the deterministic

composite in Eq. (61) on the right hand side, and (iii) use the
surjectivity of µs, see Eq. (58), to obtain the following:
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M
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s

X M
µ−1
s

X

X X

µ−1
supdX µs

X X M X
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X M
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s

X

X X

µ−1
supdX µs

X X M X

µ−1
s

= updM
M

µ−1
s

X
updX

M
µ−1
s

X X
=⇒ M

X
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s

X

updX
X X

µ−1
s

M

X

updX
X X

µ−1
s

M

X

updM µ−1
s

XM

=⇒
=

(63)

ACKNOWLEDGMENTS

Matteo Capucci is an Independent Researcher funded by
the Advanced Research+Innovation Agency (ARIA). Work by
Martin Biehl on this paper was made possible through the
support of Grants 62828 and 62229 from the John Templeton
Foundation. Nathaniel Virgo’s work on this paper was made
possible through the support of grant 62229 from the John
Templeton Foundation. The opinions expressed in this publi-
cation are those of the authors and do not necessarily reflect
the views of the John Templeton Foundation.

REFERENCES

[1] R. C. Conant and W. R. Ashby, “Every good regulator of a system must
be a model of that system,” International journal of systems science,
vol. 1, no. 2, pp. 89–97, 1970.

[2] W. R. Ashby, “Requisite variety and its implications for the control of
complex systems,” Cybernetica, vol. 1, pp. 83–99, 1958.

[3] B. A. Francis and W. M. Wonham, “The internal model principle of
control theory,” Automatica, vol. 12, no. 5, pp. 457–465, 1976.

[4] E. D. Sontag, “Adaptation and regulation with signal detection implies
internal model,” Systems & control letters, vol. 50, no. 2, pp. 119–126,
2003.

[5] M. Bin, J. Huang, A. Isidori, L. Marconi, M. Mischiati, and E. D. Sontag,
“Internal models in control, bioengineering, and neuroscience,” Annual
Review of Control, Robotics, and Autonomous Systems, vol. 5, pp. 55–
79, 2022.

[6] T.-M. Yi, Y. Huang, M. I. Simon, and J. Doyle, “Robust perfect
adaptation in bacterial chemotaxis through integral feedback control,”
Proceedings of the National Academy of Sciences, vol. 97, no. 9, pp.
4649–4653, 2000.

[7] C. Briat, A. Gupta, and M. Khammash, “Antithetic integral feedback
ensures robust perfect adaptation in noisy biomolecular networks,” Cell
systems, vol. 2, no. 1, pp. 15–26, 2016.

[8] M. H. Khammash, “Perfect adaptation in biology,” Cell Systems, vol. 12,
no. 6, pp. 509–521, 2021.

[9] D. Ha and J. Schmidhuber, “World models,” arXiv preprint
arXiv:1803.10122, 2018.

[10] P. Wu, A. Escontrela, D. Hafner, P. Abbeel, and K. Goldberg, “Day-
dreamer: World models for physical robot learning,” in Conference on
Robot Learning. PMLR, 2023, pp. 2226–2240.

[11] T. Taniguchi, S. Murata, M. Suzuki, D. Ognibene, P. Lanillos, E. Ugur,
L. Jamone, T. Nakamura, A. Ciria, B. Lara et al., “World models and
predictive coding for cognitive and developmental robotics: frontiers and
challenges,” Advanced Robotics, pp. 1–27, 2023.

[12] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed. Prentice Hall Press, 2009.

[13] S. Grossberg, “Competitive learning: From interactive activation to
adaptive resonance,” Cognitive science, vol. 11, no. 1, pp. 23–63, 1987.



13

[14] M. Kawato, “Internal models for motor control and trajectory planning,”
Current opinion in neurobiology, vol. 9, no. 6, pp. 718–727, 1999.

[15] M. Ito, “Control of mental activities by internal models in the cerebel-
lum,” Nature Reviews Neuroscience, vol. 9, no. 4, pp. 304–313, 2008.

[16] B. Baker, B. Lansdell, and K. P. Kording, “Three aspects of represen-
tation in neuroscience,” Trends in cognitive sciences, 2022.

[17] I. Harvey, “Untimed and misrepresented: Connectionism and the com-
puter metaphor,” University of Sussex, School of Cognitive and Com-
puting Sciences, Tech. Rep., 1992.

[18] R. D. Beer, “A dynamical systems perspective on agent-environment
interaction,” Artificial Intelligence, vol. 72, no. 1-2, pp. 173–215, 1995.

[19] T. Van Gelder, “What might cognition be, if not computation?” The
Journal of Philosophy, vol. 92, no. 7, pp. 345–381, 1995.

[20] I. Harvey, “Misrepresentations,” in Proceedings of the Eleventh Inter-
national Conference on the Simulation and Synthesis of Living Systems.
MIT Press, 2008.

[21] D. C. Knill and W. Richards, Perception as Bayesian inference. Cam-
bridge University Press, 1996.

[22] D. McNamee and D. M. Wolpert, “Internal models in biological control,”
Annual review of control, robotics, and autonomous systems, vol. 2, pp.
339–364, 2019.

[23] E. Todorov, “Optimal control theory,” Bayesian brain: probabilistic
approaches to neural coding, pp. 269–298, 2006.

[24] A. K. Seth, “The Cybernetic Bayesian Brain,” in Open MIND, W. Wiese
and T. K. Metzinger, Eds. Frankfurt am Main, Germany: MIND Group,
2014, pp. 9–24.

[25] W. M. Wonham, “Towards an abstract internal model principle,” IEEE
Transactions on Systems, Man, and Cybernetics, no. 11, pp. 735–740,
1976.

[26] J. S. A. Hepburn and W. M. Wonham, “The internal model principle
of regulator theory on differentiable manifolds,” IFAC Proceedings
Volumes, vol. 14, no. 2, pp. 319–323, 1981.

[27] ——, “Structurally stable nonlinear regulation with step inputs,” Math-
ematical systems theory, vol. 17, no. 1, pp. 319–333, 1984.

[28] ——, “Error feedback and internal models on differentiable manifolds,”
IEEE Transactions on Automatic Control, vol. 29, no. 5, pp. 397–403,
1984.

[29] J. Huang, A. Isidori, L. Marconi, M. Mischiati, E. D. Sontag, and W. M.
Wonham, “Internal models in control, biology and neuroscience,” in
2018 IEEE Conference on Decision and Control (CDC). IEEE, 2018,
pp. 5370–5390.

[30] D. J. Myers, “Double categories of open dynamical systems,” Electronic
Proceedings in Theoretical Computer Science, vol. 333, pp. 154–167,
2021.

[31] ——, “Categorical systems theory,” http://davidjaz.com/Papers/
DynamicalBook.pdf, 2023.
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